

entity-fishing - Entity Recognition and Disambiguation

	Overview
	Motivation

	Tasks

	Summary

	How to cite

	License and contact

	Install, build, run, and monitor
	Install, build, and run

	Metrics and monitoring

	Creating a new Knowledge Base version

	entity-fishing Console

	entity-fishing REST API
	entity-fishing query processing

	Knowledge base concept retrieval

	Term Lookup

	Language identification

	Sentence segmentation

	Customisation API

	Evaluation
	Datasets for long texts

	Evaluation commands

	Generation of pre-annotated training/evaluation data

	References

	Train and evaluate
	Training with Wikipedia

	Evaluation with Wikipedia

	Training with an annotated corpus

	Creating entity embeddings

	License and contact

Overview

Motivation

One of the backbone of the activities of scientists regarding technical and scientific information at large is the identification and resolution of specialist entities. This could be the identification of scientific terms, of nomenclature-based expressions such as chemical formula, of quantity expressions, etc. It is considered that between 30 to 80% of the content of a technical or scientific document is written in specialist language (Ahmad, 1996) [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.50.7956&rep=rep1&type=pdf]. Researchers in Digital Humanities and in Social Sciences are often first of all interested in the identification and resolution of so-called named entities, e.g. person names, places, events, dates, organisation, etc. Entities can be known in advance and present in generalist or specialized knowledge bases. They can also be created based on open nomenclatures and vocabularies and impossible to enumerate in advance.

The entity-fishing services try to automate this recognition and disambiguisation task in a generic manner, avoiding as much as possible restrictions of domains, limitations to certain classes of entities or to particular usages.

Tasks

entity-fishing performs the following tasks:

	entity recognition and disambiguation against Wikidata in a raw text, partially-annotated text segment,

[image: text query processing]

	entity recognition and disambiguation against Wikidata at document level, for example a PDF with layout positioning and structure-aware annotations,

[image: PDF query processing]

	search query disambiguation (the short text mode) - below disambiguation of the search query “concrete pump sensor” in the service test console,

[image: short text query processing]

	weighted term vector disambiguation (a term being a phrase),

[image: Weighted term vector query processing]

	interactive disambiguation in text editing mode.

[image: Editor with real time disambiguation]

Summary

For an overview of the system, some design, implementation descriptions, and some evaluations, see this Presentation of entity-fishing at WikiDataCon 2017 [https://grobid.s3.amazonaws.com/presentations/29-10-2017.pdf/].

Supervised machine learning is used for the disambiguation, based on Random Forest and Gradient Tree Boosting exploiting various features. The main disambiguation techniques include graph distance to measure word and entity relatedness and distributional semantic distance based on word and entity embeddings. Training is realized exploiting Wikipedia, which offers for each language a wealth of usage data about entity mentions in context. Results include in particular Wikidata identifiers and, optionally, statements.

The API uses a full Query DSL with many customization capacities. It offers for instance the possibility to apply filters based on Wikidata properties and values, allowing to create specialised entity identification and extraction (e.g. extract only taxon entities or only medical entities in a document) relying on million entities and statements present in Wikidata.

The tool currently supports 11 languages, English, French, German, Spanish, Italian, Arabic, Japanese, Chinese (Mandarin), Russian, Portuguese and Farsi. For English and French, a Name Entity Recognition based on CRF grobid-ner [https://github.com/kermitt2/grobid-ner] is used in combination with the disambiguation. For each recognized entity in one language, it is possible to complement the result with crosslingual information in the other languages. A nbest mode is available. Domain information are produced for a large amount of entities in the technical and scientific fields, together with Wikipedia categories and confidence scores.

The tool is developed in Java and has been designed for fast processing (at least for a NERD system, around 1000-2000 tokens per second on a medium-profile linux server single thread or one PDF page of a scientific articles in less than 1 second), with limited memory (at least for a NERD system, here 3GB of RAM as minimum) and to offer relatively close to state-of-the-art accuracy (more to come!). A search query can be disambiguated in 1-10 milliseconds. entity-fishing uses the very fast SMILE ML [https://haifengl.github.io/smile/] library for machine learning and a JNI integration of LMDB [https://github.com/deephacks/lmdbjni] as embedded database.

How to cite

If you want to cite this work, please refer to the present GitHub project, together with the [Software Heritage](https://www.softwareheritage.org/) project-level permanent identifier. For example, with BibTeX:

@misc{entity-fishing,
 title = {entity-fishing},
 howpublished = {\url{https://github.com/kermitt2/entity-fishing}},
 publisher = {GitHub},
 year = {2016--2022},
 archivePrefix = {swh},
 eprint = {1:dir:cb0ba3379413db12b0018b7c3af8d0d2d864139c}
}

License and contact

entity-fishing is distributed under Apache 2.0 license [http://www.apache.org/licenses/LICENSE-2.0].
The dependencies used in the project are either themselves also distributed under Apache 2.0 license or distributed under a compatible license.

The documentation is distributed under CC-0 [https://creativecommons.org/publicdomain/zero/1.0/] license and the annotated data under CC-BY [https://creativecommons.org/licenses/by/4.0/] license.

If you contribute to entity-fishing, you agree to share your contribution following these licenses.

Main author and contact: Patrice Lopez (<patrice.lopez@science-miner.com>)

Install, build, run, and monitor

Install, build, and run

entity-fishing requires JDK 1.8 or higher. It supports Linux-64. Mac OS environments should work fine, but it is unofficially supported. Below, we make available the up-to-date and full binary index data for Linux-64 architecture.

Running the service requires at least 3GB of RAM for processing text inputs, but more RAM will be exploited if available for speeding up access to the compiled Wikidata and Wikipedia data (including Wikidata statements associated to entities) and for enabling high rate parallel processing. In case PDF are processed, a mimimum of 8GB is required due to additional PDF parsing and structuring requirements. For parallel processing of PDF exploiting multhreading (e.g. 10 parallel threads), 16GB is recommended.

After decompressing all the index data, up to 100 GB of disk space will be used if you wish to use all the supported languages (en, fr, de, it, es, ar, zh, ru, ja, pt, fa) - be sure to have enough free space. For running English language only, you will need around 50 GB. SSD is highly recommended for best performance and experience, in particular with a low amount of available RAM (e.g. RAM < 4GB).

First install GROBID and grobid-ner, see the relative instruction of GROBID [http://github.com/kermitt2/grobid] and grobid-ner [http://github.com/kermitt2/grobid-ner].

You need to install latest current stable version 0.7.1 of GROBID and grobid-ner. For GROBID:

Clone GROBID source code from github, latest stable version (currently 0.7.1):

$ git clone https://github.com/kermitt2/grobid.git --branch 0.7.1

Then build Grobid, in the main directory:

$ cd grobid
$./gradlew clean install

The path to grobid-home shall indicated in the file data/config/mention.yaml of the entity-fishing project, for instance:

path to the GROBID home (for grobid-ner, grobid, etc.)
grobidHome: ../grobid/grobid-home/

For grobid-ner now, under grobid/, install grobid-ner:

$ git clone https://github.com/kermitt2/grobid-ner.git

Then build grobid-ner, in the sub-project directory:

$ cd grobid-ner
$./gradlew copyModels
$./gradlew clean install

Install entity-fishing:

$ git clone https://github.com/kermitt2/entity-fishing.git

Then install the compiled indexed data:

	Download the zipped data files corresponding to your environment. The knowledge-base (Wikidata, db-kb.zip) and the English Wikipedia data (db-en.zip) must always been installed as minimal set-up. You can then add your languages of choice at the following links. Total is around 29 GB compressed, and around 90 GB uncompressed. The data for this version 0.0.5 correspond to the Wikidata and Wikipedia dumps from Feb., 1st 2022. The Knowledge Base part contains around 96 million entities. In this available KB data file, only the statements for entities having at least one Wikipedia page in one of the 9 supported languages are loaded (it’s possible to load all of them by regenerating the KB with a dedicated parameter).

Linux

	https://science-miner.s3.amazonaws.com/entity-fishing/0.0.5/db-kb.zip (7.5 GB)

	https://science-miner.s3.amazonaws.com/entity-fishing/0.0.5/db-en.zip (6.9 GB)

	https://science-miner.s3.amazonaws.com/entity-fishing/0.0.5/db-fr.zip (2.3 GB)

	https://science-miner.s3.amazonaws.com/entity-fishing/0.0.5/db-de.zip (2.6 GB)

	https://science-miner.s3.amazonaws.com/entity-fishing/0.0.5/db-es.zip (1.8 GB)

	https://science-miner.s3.amazonaws.com/entity-fishing/0.0.5/db-it.zip (1.6 GB)

	https://science-miner.s3.amazonaws.com/entity-fishing/0.0.5/db-ar.zip (1.3 GB)

	https://science-miner.s3.amazonaws.com/entity-fishing/0.0.5/db-zh.zip (1.3 GB)

	https://science-miner.s3.amazonaws.com/entity-fishing/0.0.5/db-ru.zip (2.3 GB)

	https://science-miner.s3.amazonaws.com/entity-fishing/0.0.5/db-ja.zip (1.8 GB)

	https://science-miner.s3.amazonaws.com/entity-fishing/0.0.5/db-pt.zip (1.8 GB)

	https://science-miner.s3.amazonaws.com/entity-fishing/0.0.5/db-fa.zip (1.8 GB)

MacOS is not officially supported and should not be used for production. For convenience, we still make available the MacOS data version 0.0.3 corresponding to the Wikidata and Wikipedia dumps from mid-2018. Although outdated and Arabic not available, they are still compatible with the entity-fishing version 0.0.4 and 0.0.5 and could be used for test/development. However, we strongly recommend to use the Linux version for any serious works.

MacOS

	https://science-miner.s3.amazonaws.com/entity-fishing/0.0.3/macos/db-kb.zip (4.1 GB)

	https://science-miner.s3.amazonaws.com/entity-fishing/0.0.3/macos/db-en.zip (5.5 GB)

	https://science-miner.s3.amazonaws.com/entity-fishing/0.0.3/macos/db-fr.zip (1.9 GB)

	https://science-miner.s3.amazonaws.com/entity-fishing/0.0.3/macos/db-de.zip (2.0 GB)

	https://science-miner.s3.amazonaws.com/entity-fishing/0.0.3/macos/db-es.zip (1.5 GB)

	https://science-miner.s3.amazonaws.com/entity-fishing/0.0.3/macos/db-it.zip (1.3 GB)

	Unzip the db archives files under data/db/.

This will install several sub-directories, one per language, plus wikidata (db-kb): data/db/db-XY/, with XY equal to fr, en, it, es, en, ar, zh, ru, ja, pt and fa. The full uncompressed data is more than 90 GB.

	Build the project, under the entity-fishing project repository.

$./gradlew clean build

You should be now ready to run the service.

	Run the service:

$./gradlew run

The test console is available at port :8090 by opening in your browser: http://localhost:8090

The service port, CORS parameters, and logging parameters can be configured in the file data/config/service.yaml.

For more information, see the next section on the entity-fishing Console.

Metrics and monitoring

As the server is started, the Dropwizard administrative/service console can be accessed at http://localhost:8091/ (default hostname and port)

DropWizard metrics are available at http://localhost:8091/metrics?pretty=true

Prometheus metrics (e.g. for Graphana monitoring) are available at http://localhost:8091/metrics/prometheus

Creating a new Knowledge Base version

The knowledge base used by entity-fishing can be updated with new versions of Wikidata and Wikipedia using the pre-processing from the library GRISP [https://github.com/kermitt2/grisp], see https://github.com/kermitt2/grisp.

entity-fishing Console

The entity-fishing console is a graphical web interface, part of the entity-fishing project, providing means to discover and test the service. With the console, it is possible to process chunks of text (typically a paragraph), PDF files and to verify which entities are recognised and how they are disambiguated.

The console is also a reference implementation in javascript (with JQuery) of a web application using the entity-fishing API service. As such, it illustrates how to call the services with mainstream Ajax queries, how to parse JSON results with vulgus JQuery and how to dynamically annotate a PDF with PDF.js and a dynamic HTML layer.

The console is available at the root address of the server (e.g. http://localhost:8090 by default, to be changed in the configuration file data/config/service.yaml).

The About page provides licence (Open Source Apache 2 licence for the entire tool including used dependencies) and contact information.

[image: _images/nerdConsole1.png]
The web page Services allows to test the different REST requests.

[image: _images/nerdConsole2.png]
A text form allows the analysis of any queries expressed in the entity-fishing query DSL (see next section). On the right side of the input form, samples of text can be found, from scientific articles, news and historical documents in supported various languages.

In the lower part, entities are recognised in the provided text and displayed using different colors, based on the entity type and domain. On the lower right side, an infobox is displaying information provided by the service about the disambiguated Wikidata/Wikipedia entity.

In this example the text box is used to disambiguate a search query:

[image: _images/nerdConsole3.png]
The console allows to test all the different services provided by entity-fishing, e.g. it’s possible to visualise the various sentences identified by the the sentence segmentation service (more details on this specific service in the REST API documentation).

[image: _images/nerdConsole4.png]
In addition, it is possible to view the service raw response (in JSON format) for helping the integration phase:

[image: _images/nerdConsole5.png]
More details about the response in the next section.

entity-fishing REST API

As RESTful web services, entity-fishing is defined by a certain number of stateless transformations of data made available to “consumers” via its interface.

All these RESTful services are available through Cross-origin resource sharing (CORS), allowing clients, such as web browser and server to interact in a flexible manner with cross-origin request.

entity-fishing query processing

The entity-fishing query processing service takes as input a JSON structured query and returns the JSON query enriched with a list of identified and, when possible, disambiguated entities.

	The entity-fishing service can be applied on 4 types of input content:

	
	text, provided as JSON string value, for example one or several paragraphs of natural language,

	search query, provided as JSON string value, corresponding to several search terms used together and which can possibly be disambiguated when associated,

	weighted vector of terms, provided by a structured JSON array, where each term will be disambiguated, when possible, in the context of the complete vector - weighted vector of term is a very common structure used in information retrieval, clustering and classification.

	PDF document, provided as multipart data with the JSON query string.

One and only one input type is mandatory in a query, otherwise an HTTP error 400 is returned (see response status codes below). Combining multiple inputs in a single request is currently not supported.

Supported languages

In the current version 11 languages are supported: English, French, German, Spanish, Italian, Arabic, Japanese, Chinese (Mandarin), Russian, Portuguese and Farsi are supported. We plan to extend the support in future releases, as long the volume of the Wikipedia corpus for a new language is sufficient.

The service returns an HTTP error 406 if the language of the text to be processed is not supported, see below.

Response status codes

In the following table are listed the status codes returned by this entry point.

	HTTP Status code

	Reason

	200

	Successful operation.

	400

	Wrong request, missing parameters, missing header

	404

	Indicates property was not found

	406

	The language is not supported

	500

	Indicate an internal service error

REST query

POST /disambiguate

	Parameters

	required

	name

	content-type value

	description

	required

	query

	multipart/form-data

	Query to be processed in JSON UTF-8

	optional

	file

	multipart/form-data

	PDF file (as multipart)

NOTE: To process the text query only (no PDF), is also possible to send it as normal application/json raw data.

	Request header

	required

	name

	value

	description

	optional

	Accept

	application/json

	Set the response type of the output

Query format description

The entity-fishing query processing service always consumes a parameter which is a JSON string representing a query, and optionally a PDF file. The service thus follows a Query DSL approach (like, for instance, ElasticSearch) to express queries instead of multiples HTTP parameters. This approach allows queries which are much richer, flexible and simple to express, but also interactive scenarios (where output of the services can be used easily as input after some changes from the user, as for instance in an interactive text editing task).

The JSON query indicates what is the textual content to process, the various (optional) parameters to consider when processing it, optionally some already existing disambiguated entities (already disambiguated by a user or via a particular workflow), and an optional customisation to provide more context to the disambiguation process.

The JSON query is similar to the response of the entity-fishing service, so that a entity-fishing service response can be sent as query after light modifications in an interactive usage scenario, or to be able to process easily already partially annotated text.

When annotations are present in the query, the entity-fishing system will consider them certain and:

	ensure that the user annotations will be present in the output response without inconsistencies with other annotations,

	exploit the user annotations to improve the context for identifying and disambiguating the other possible entities.

Similarly,

	if no language is indicated (usual scenario), the entity-fishing service will use a language identifier to detect the correct language and the language resources to use. However, the query can also optionally specify a language for the text to be processed. This will force the service to process the text with the corresponding particular language resources.

	it is possible also to pass an existing sentence segmentation to the entity-fishing service via the JSON query, in order that the service provides back identified entities following the given sentence segmentation.

The client must respect the JSON format of the entity-fishing response as new query, as described below:

Generic format

The JSON format for the query parameter to be sent to the service is identical to a response of the service:

{
 "text": "The text to be processed.",
 "shortText": "term1 term2 ...",
 "termVector": [
 {
 "term": "term1",
 "score": 0.3
 },
 {
 "term": "term2",
 "score": 0.1
 }
],
 "language": {
 "lang": "en"
 },
 "entities": [],
 "mentions": ["ner","wikipedia"],
 "nbest": 0,
 "sentence": false,
 "customisation": "generic",
 "processSentence": [],
 "structure": "grobid"
}

One and only one of the 4 possible input type - JSON field text, shortText, termVector or a PDF file - must be provided in a query to be valid.
Using multiple input type in the same query is not supported in the version of the API described here.

(1) text

Provides a text to be processed (e.g. one or several paragraphs). The text have be greater than 5 character or 406 is returned. The expected amount of text to disambiguate for the different models is a paragraph (100-150 words). If the amount of text is larger, the text will be automatically segmented into balanced segments of maximum 1000 characters (this default size can be changed), using end-of-line and then sentence boundaries. A sliding context will be managed to pass the previous accumulated context (best entities, identified acronyms, …) to the following segments.

(2) shortText

Provides a search query to be processed.

(3) termVector

Provides a list of terms, each term being associated to a weight indicating the importance of the term as compared to the other terms.

(4) language

If this field is empty, a language identifier is used. When the source language (parameters language) is pre-set the language is considered certain, and a language identifier is not used.

(5) mentions

Provides the methods to be used to identify mentions to be disambiguated. By default, mentions are identified with an NER (the mentions are all Named Entity found in the input text to be processed), noted ner and with all the labels of Wikipedia for the appropriate language (all the anchors and titles used to refer to a Wikipedia page), noted wikipedia. The order of the mention identification methods matters.

If the mentions field is an empty array ("mentions": [],), only the mentions present in the fied entities will be disambiguated. This case allows to target the disambiguation only to one or a few mentions in a sentence or a text.

(6) entities

In the input example above, the list entities can be used to provide predefined entities or mentions (typically pre-annotated by a user).
Having an already annotated entity helps the disambiguation service to resolve entity mentions by offering an important contribution to the global context. When the entities attribute is not present or empty there are simply no predefined annotations.

For example having a text with the mention “Washington” and manually providing its referring entity (e.g. the city Washington DC) is an important advantage for a correct disambiguation of the other entity mentions in the text.

Below an example of how the pre-annotated entity can be provided. The algorithm would naturally disambiguate German Army with
German Army (Wehrmacht) (wikipediaId: 12354993) because the text is contextualised on the First World War.
The users can alter this result, by forcing the term to be the German Army of the Second World War (wikipediaId: 11702744).
In the response the entity should be returned with confidence 1.0 (as it has been manually provided).

In order to get the wikipedia information for a term, check the term lookup documentation.

NOTE: At the moment the entity is taken in account only when the wikipediaExternalRef is provided:

{
 "text": "Austria invaded and fought the Serbian army at the Battle of Cer and Battle of Kolubara beginning on 12 August.",
 "language": {
 "lang": "en"
 },
 "entities": [
 {
 "rawName": "German Army",
 "offsetStart": 1107,
 "offsetEnd": 1118,
 "wikipediaExternalRef": 11702744,
 "wikidataId": "Q701923"
 }
]
}

In a typical interactive scenario, an application client first sends a text to be processed via the /disambiguate service, and receives a JSON response with some entities. The annotated text is displayed to a user which might correct some invalid annotations. The client updates the modified annotations in the first JSON response and can send it back to the service now as new query via the /disambiguate.
The corrected annotations will then be exploited by the entity-fishing system to possibly improve the other annotations and disambiguations.

The entities field can also contains only mentions defined by their offsets in the text, without wikidata/wikipedia information. The mention will then be considered as a forced target mention to be disambiguated. In case the above mentions field (5) is an empty array (i.e. no method to detect mention), these mentions defined in entities will still be considered and disambiguated. This a way to limit the disambiguation to one or few mentions in a text, with significant runtime gain.

(7) processSentence

The processSentence parameter is introduced to support interactive text editing scenarios. For instance, a user starts writing a text and wants to use the entity-fishing service to annotate dynamically the text with entities as it is typed.

To avoid having the server reprocessing several time the same chunk of text and slowing down a processing time which has to be almost real time, the client can simply indicate a sentence - the one that has just been changed - to be processed.

The goal is to be able to process around two requests per second, even if the typed text is very long, so that the annotations can be locally refreshed smoothly, even considering the fastest keystroke rates that a human can realize.

The processSentence parameter is followed by a list of notations (only numbers in integer, e.g. [1, 7] - note that the index starts from 0) corresponding to the sentence index will limit the disambiguation to the selected sentences, while considering the entire text and the previous annotations.

In this example only the second sentence will be processed by entity-fishing:

{
 "text": "The army, led by general Paul von Hindenburg defeated Russia in a series of battles collectively known as the First Battle of Tannenberg. But the failed Russian invasion, causing the fresh German troops to move to the east, allowed the tactical Allied victory at the First Battle of the Marne.",
 "processSentence": [
 1
]
}

When processSentence is set, the sentence segmentation is triggered anyway and the value of the attribute sentence is ignored:

{
 "text": "The army, led by general Paul von Hindenburg defeated Russia in a series of battles collectively known as the First Battle of Tannenberg. But the failed Russian invasion, causing the fresh German troops to move to the east, allowed the tactical Allied victory at the First Battle of the Marne.",
 "processSentence": [
 1
],
 "sentences": [
 {
 "offsetStart": 0,
 "offsetEnd": 138
 },
 {
 "offsetStart": 138,
 "offsetEnd": 293
 }
],
 "entities": [
 {
 "rawName": "Russian",
 "type": "NATIONAL",
 "offsetStart": 153,
 "offsetEnd": 160
 }
]
}

Example using CURL (using the query above):

curl 'http://cloud.science-miner.com/nerd/service/disambiguate' -X POST -F "query={ 'text': 'The army, led by general Paul von Hindenburg defeated Russia in a series of battles collectively known as the First Battle of Tannenberg. But the failed Russian invasion, causing the fresh German troops to move to the east, allowed the tactical Allied victory at the First Battle of the Marne.', 'processSentence': [1], 'sentences': [{ 'offsetStart': 0, 'offsetEnd': 138 }, { 'offsetStart': 138, 'offsetEnd': 293 }], 'entities': [{ 'rawName': 'Russian', 'type': 'NATIONAL', 'offsetStart': 153, 'offsetEnd': 160 }] }"

(8) structure

The structure parameter is only considered when the input is a PDF. For processing scientific and technical documents, in particular scholar papers, the value should be grobid which is a state of the art tool for structure the body of a scientific paper - it will avoid labelling bibliographical callout (like Romary and al.), running foot and head notes, figure content, it will identify the useful areas (header, paragraphs, captions, etc.), handling multiple columns, hyphen, etc. It will apply custom processing based on the nature of the identified structure. This enables “structure-aware” annotations. If no structure value is provided, the value grobid will be used.

If you wish to process the whole document without specific structure analysis - this is advised for non-scientific papers -, use the value full.

Example using CURL for processing the full content of a PDF, without preliminar structure recognition:

curl 'http://cloud.science-miner.com/nerd/service/disambiguate' -X POST -F "query={'language': {'lang':'en'}}, 'entities': [], 'nbest': false, 'sentence': false, 'structure': 'full'}" -F "file=@PATH_FILENAME.pdf"

Additional optional parameters

In addition to the different parameters described previously, it is also possible to set per query three additional parameters:

	ngramLength: the maximum length of a term to be considered as mention, default is 6 (i.e. complex terms will be considered up to 6 words)

	targetSegmentSize: the maximum length of a segment to be considered when processing long texts in number of characters, default is 1000 (i.e. a text of 10,000 characters will be segmented in approximatively ten balanced segments of a maximum 1000 characters)

	minSelectorScore: this overrides the minSelectorScore indicated in the language-specific configuration files. It indicates the minimum score produced by the selector model under which the entities will be pruned. This parameter can be used to modify the balance between precision and recall of the entity recognition.

	maxTermFrequency: this overrides the maxTermFrequency indicated in the language-specific configuration files. This parameter indicates the maximum term frequency above which the terms will be skipped and not used in the disambiguation. The frequency is expressed as Zipf, i.e. a number typically between 0 and 8. Decreasing the value of this parameter can be used for faster processing runtime of the query, but some entities might be overlooked.

It is advised not to modify these parameters in a normal usage of the service, because the different models have been trained with the default parameter values. Modifying these parameters might decrease the accuracy of the service.

The following third additional parameter is currently only used for text queries and relevant to long text:

	documentLevelPropagation: if true, the entities disambiguated for certain mentions are propagated to other same mentions in the document not labeled with an entity. This allows to maintain a document level consistency where some mentions, due to poorer context, are not disambiguated, while other mentions in richer contexts are disambiguated. To be propagated, the mention tf-idf must be higher than a certain threshold in order to propagate only non trivial, minimally discriminant terms. Default is true.

PDF input

This service is processing a PDF provided as input after extracting and structuring its raw content. Structuration is currently specialized to scientific and technical articles. Processing a PDF not corresponding to scientific articles is currently not recommended.

In addition to the query, it accepts a PDF file via `multi-part/form-data`.

The JSON format for the query parameter to be sent to the service is identical to a response of the service:

{
 "language": {
 "lang": "en"
 },
 "entities": [],
 "nbest": 0,
 "sentence": false,
 "structure": "grobid"
}

An additional parameter related to the processing of the structure of the PDF is available, called structure. For processing scientific and technical documents, in particular scholar papers, the value should be grobid which is a state of the art tool for structure the body of a scientific paper - it will avoid labelling bibliographical information, foot and head notes, figure content, will identify the useful areas (header, paragraphs, captions, etc.) handling multiple columns, hyphen, etc. and it will apply custom processnig based on the identified structure.

If you wish to process the whole document without specific structure analysis (this is advised for non-scientific documents), use the value full for the parameter structure.

Example using CURL (using the query above):

curl 'http://cloud.science-miner.com/nerd/service/disambiguate' -X POST -F "query={'language': {'lang':'en'}}, 'entities': [], 'nbest': false, 'sentence': false, 'structure': 'grobid'}" -F "file=@PATH_FILENAME.pdf"

Weighted term disambiguation

Process a weighted vector of terms. Each term will be disambiguated - when possible - in the context of the complete vector.

Example request

{
 "termVector":
 [
 {
 "term" : "computer science",
 "score" : 0.3
 },
 {
 "term" : "engine",
 "score" : 0.1
 }
],
 "language": {
 "lang": "en"
 },
 "nbest": 0
}

The termVector field is required for having a well-formed query.

Example using CURL (using the query above):

curl 'http://cloud.science-miner.com/nerd/service/disambiguate' -X POST -F "query={ 'termVector': [{ 'term' : 'computer science', 'score' : 0.3 }, { 'term' : 'engine', 'score' : 0.1 }], 'language': { 'lang': 'en' }, 'resultLanguages': ['de'], 'nbest': 0}"

Search query disambiguation

This functionality provides disambiguation for a search query expressed as a “short text”.

The input is the list of terms that are typically provided in the search bar of a search engine, and response time are optimized to remain very low (1-10ms).

For example, let’s consider the search query: “concrete pump sensor”. From this association of search terms, it is clear that the sense corresponding to concrete is the material, the entity is the device called concrete pump, and it has nothing to do with concrete as the antonym of abstract.

Processing this kind of input permits to implement semantic search (search based on concept matching) and semantic-based ranking (ranking of documents based on semantic proximity with a query, for instance exploiting clasifications, domain information, etc.) in a search engine.

Search query disambiguation uses a special model optimized for a small number of non-strictly ordered terms and trained with search queries.

The difference between standard text and short text is similar to the one of the ERD 2014 challenge [http://web-ngram.research.microsoft.com/erd2014/Docs/Detail%20Rules.pdf].

It is advised to specify the language of the query terms with the request, because the automatic language detection from short string is more challenging and errors can be relativy frequent.

Example request:

{
 "shortText": "concrete pump sensor",
 “language": {
 "lang": "en"
 },
 "nbest": 0
}

Example using CURL (using the query above):

curl 'http://cloud.science-miner.com/nerd/service/disambiguate' -X POST -F "query={'shortText': 'concrete pump sensor','language': { 'lang': 'en'},'nbest': 0}"

Response

The response returned by the entity-fishing query processing service is basically the same JSON as the JSON query, enriched by the list of identified and, when possible, disambiguated entities, together with a server runtime information.

If the textual content to be processed is provided in the query as a string, the identified entities will be associated to offset positions in the input string, so that the client can associate precisely the textual mention and the entity “annotation”.

If the textual content to be processed is provided as a PDF document, the identified entities will be associated to coordinates positions in the input PDF, so that the client can associate precisely the textual mention in the PDF via a bounding box and makes possible dynamic PDF annotations.

Response when processing a text

{
 "software": "entity-fishing",
 "version": "0.0.5",
 "runtime": 34,
 "nbest": false,
 "text": "Austria was attaching Serbia.",
 "language": {
 "lang": "en",
 "conf": 0.9999948456042864
 },
 "entities":
 [
 {
 "rawName": "Austria",
 "type": "LOCATION",
 "offsetStart": 0,
 "offsetEnd": 7,
 "confidence_score": "0.8667510394325003",
 "wikipediaExternalRef": "26964606",
 "wikidataId": "Q40",
 "domains": [
 "Atomic_Physic",
 "Engineering",
 "Administration",
 "Geology",
 "Oceanography",
 "Earth"
]
 },
[...] }

In the example above, the root layer of JSON values correspond to:

	runtime: the amount of time in milliseconds to process the request on server side,

	nbest: as provided in the query - when false or 0 returns only the best disambiguated result, otherwise indicates to return up to the specified number of concurrent entities for each disambiguated mention,

	text: input text as provided in the query, all the offset position information are based on the text in this field,

	language: language detected in the text and his confidence score, if the language is provided in the query then conf is equal to 1.0,

	entities: list of entities recognised in the text (with possibly entities provided in the query, considered then as certain),

	global_categories: provides a weighted list of Wikipedia categories, in order of relevance that are representing the context of the whole text in input.

For each entity the following information are provided:

	rawName: string realizing the entity as it appears in the text

	offsetStart, offsetEnd: the position offset of where the entity starts and ends in the text element in characters (JSON UTF-8 characters)

	confidence_score: disambiguation and selection confidence score, indicates how certain the disambiguated entity is actually valid for the text mention (this depends a lot on the amount of contextual text where this entity is predicted, the more the better),

	wikipediaExternalRef: id of the wikipedia page. This id can be used to retrieve the original page from wikipedia3 or to retrieve all the information associated to the concept in the knowledge base (definition, synonyms, categories, etc. - see the section “Knowledge base concept retrieval”),

	wikidataId: the Wikidata QID of the predicted entity. This ID can be used to retrieve the complete Wikidata entry in the knowledge base (the section “Knowledge base concept retrieval”).

	type: NER class of the entity (see table of the 27 NER classes below under “2. Named entity types”),

The type of recognised entities are restricted to a set of 27 classes of named entities (see GROBID NER documentation [http://grobid-ner.readthedocs.io/en/latest/class-and-senses/]). Entities not covered by the knowledge bases (the identified entities unknown by Wikipedia) will be characterized only by an entity class and a confidence score, without any reference to a Wikipedia article or domain information.

Response when processing a search query

{
 "software": "entity-fishing",
 "version": "0.0.5",
 "runtime": 4,
 "nbest": false,
 "shortText": "concrete pump sensor",
 "language": {
 "lang": "en",
 "conf": 1.0
 },
 "global_categories":
 [
 {
 "weight": 0.08448995135780164,
 "source": "wikipedia-en",
 "category": "Construction equipment",
 "page_id": 24719865
 },
 [...]
],
 "entities":
 [
 {
 "rawName": "concrete pump",
 "offsetStart": 0,
 "offsetEnd": 13,
 "confidence_score": 0.9501,
 "wikipediaExternalRef": 7088907,
 "wikidataId": "Q786115",
 "domains": [
 "Mechanics",
 "Engineering"
]
 },
 {
 "rawName": "sensor",
 "offsetStart": 14,
 "offsetEnd": 20,
 "confidence_score": 0.3661,
 "wikipediaExternalRef": 235757,
 "wikidataId": "Q167676",
 "domains": [
 "Electricity",
 "Electronics",
 "Mechanics"
]
 }
 [...]

Response when processing a weighted vector of terms

{
 "software": "entity-fishing",
 "version": "0.0.5",
 "date": "2022-06-22T13:21:43.245Z",
 "runtime": 870,
 "nbest": false,
 "termVector": [
 {
 "term": "computer science",
 "score": 0.3,
 "entities": [
 {
 "rawName": "computer science",
 "preferredTerm": "Computer science",
 "confidence_score": 0,
 "wikipediaExternalRef": 5323,
 "wikidataId": "Q21198",
 "definitions": [{
 "definition": "'''Computer science''' blablabla.",
 "source": "wikipedia-en",
 "lang": "en"
 }]
 "categories": [
 {
 "source": "wikipedia-en",
 "category": "Computer science",
 "page_id": 691117
 },
 [...]
],
 "multilingual": [
 {
 "lang": "de",
 "term": "Informatik",
 "page_id": 2335
 }
]
 }]
 }
 [...]

Response description when processing PDF

{
 "software": "entity-fishing",
 "version": "0.0.5",
 "date": "2022-06-22T13:29:21.014Z",
 "runtime": 32509,
 "nbest": false,
 "language": {
 "lang": "en",
 "conf": 0.9999987835857094
 },
 "pages":
 [
 {
 "page_height":792.0,
 "page_width":612.0
 },
 {
 "page_height":792.0,
 "page_width":612.0
 },
 {
 "page_height":792.0,
 "page_width":612.0
 },
 {
 "page_height":792.0,
 "page_width":612.0
 }
],
 "entities": [
 {
 "rawName": "Austria",
 "type": "LOCATION",
 "confidence_score": "0.8667510394325003",
 "pos": [
 { "p": 1, "x": 20, "y": 20, "h": 10, "w": 30 },
 { "p": 1, "x": 30, "y": 20, "h": 10, "w": 30 }]
 "wikipediaExternalRef": "26964606",
 "wikidataId": "Q40",
 "domains": [
 "Atomic_Physic", "Engineering", "Administration", "Geology", "Oceanography", "Earth"
] },
 [...] }

As apparent in the above example, for PDF the offset position of the entities are replaced by coordinates information introduced by the JSON attribute pos. These coordinates refer to the PDF that has been processed and permit to identify the chunk of annotated text by the way of a list of bounding boxes.

In addition, an attribute pages is used to indicate the size of each page of the PDF document which is a necessary information to position correctly annotations.

The next section further specifies the coordinates information provided by the service (see GROBID [http://github.com/kermitt2/grobid]).

PDF Coordinates

The PDF coordinates system has three main characteristics:

	contrary to usage, the origin of a document is at the upper left corner. The x-axis extends to the right and the y-axis extends downward,

	all locations and sizes are stored in an abstract value called a PDF unit,

	PDF documents do not have a resolution: to convert a PDF unit to a physical value such as pixels, an external value must be provided for the resolution.

In addition, contrary to usage in computer science, the index associated to the first page is 1 (not 0).

The response of the processing of a PDF document by the entity-fishing service contains two specific structures for positioning entity annotations in the PDF:

	the list of page size, introduced by the JSON attribute pages. The dimension of each page is given successively by two attributes page_height and page_height.

	for each entity, a json attribute pos introduces a list of bounding boxes to identify the area of the annotation corresponding to the entity. Several bounding boxes might be necessary because a textual mention does not need to be a rectangle, but the union of rectangles (a union of bounding boxes), for instance when a mention to be annotated is on several lines.

A bounding box is defined by the following attributes:

	p: the number of the page (beware, in the PDF world the first page has index 1!),

	x: the x-axis coordinate of the upper-left point of the bounding box,

	y: the y-axis coordinate of the upper-left point of the bounding box (beware, in the PDF world the y-axis extends downward!),

	h: the height of the bounding box,

	w: the width of the bounding box.

As a PDF document expresses value in abstract PDF unit and do not have resolution, the coordinates have to be converted into the scale of the PDF layout used by the client (usually in pixels).
This is why the dimension of the pages are necessary for the correct scaling, taking into account that, in a PDF document, pages can be of different size.

The entity-fishing console offers a reference implementation with PDF.js for dynamically positioning entity annotations on a processed PDF.

Knowledge base concept retrieval

This service returns the knowledge base concept information. In our case case, language-independent information from Wikidata will be provided (Wikidata identifier, statements), together with language-dependent information (all the Wikipedia information: Wikipedia categories, definitions, translingual information, etc.). This service is typically used in pair with the main entity-fishing query processing service in order to retrieve a full description of an identified entity.

	The service supports the following identifiers:

	
	wikidata identifier (starting with Q, e.g. Q61)

	wikipedia identifier

The entity-fishing content processing service returns the identifiers of the resulting entities with some position offset information. Then, if the client wants, for instance, to display an infobox for this entity, it will send a second call to this service and retrieve the full information for this particular entity.
Adding all the associated information for each entity in the response of the entity-fishing query processing service would result in a very large response which would slow a lot the client, such as a web browser for instance. Using such separate queries allows efficient asynchronous calls which will never block a browser and permits to make only one call per entity, even if the same entity has been found in several places in the same text.

The entity-fishing console offers an efficient reference implementation with Javascript and Ajax queries through the combination of the main entity-fishing query processing service and the Knowledge base concept retrieval.

Response status codes

In the following table are listed the status codes returned by this entry point.

	HTTP Status code

	Reason

	200

	Successful operation.

	400

	Wrong request, missing parameters, missing header

	404

	Indicates property was not found

	500

	Indicate an internal service error

GET /kb/concept/{id}

	Parameters

	required

	name

	content-type value

	description

	required

	id

	String

	ID of the concept to be retrieved (wikipedia, wikidata id (starting with Q) or property (starting with P).

	optional

	lang

	String

	(valid only for wikipedia IDs) The language knowledge base where to fetch the concept from. Default: en.

	Request header

	required

	name

	value

	description

	optional

	Accept

	application/json

	Set the response type of the output

(3) Example response

{
 "rawName": "Austria",
 "preferredTerm": "Austria",
 "confidence_score": "0.0",
 "wikipediaExternalRef": "26964606",
 "wikidataId": "Q1234"
 "definitions": [
 {
 "definition": "'''Austria''', officially the '''Republic of Austria'''",
 "source": "wikipedia-en",
 "lang": "en"
 }
],
 "categories": [
 {
 "source": "wikipedia-en",
 "category": "Austria",
 "page_id": 707451
 },
 {
 "lang": "de",
 "source": "wikipedia-en",
 "category": "Erasmus Prize winners",
 "page_id": 1665997
 }
],
 "multilingual": [
 {
 "lang": "de",
 "term": "Österreich",
 "page_id": 1188788
 },
 {
 "lang": "fr",
 "term": "Autriche",
 "page_id": 15
 }
]
}

The elements present in this response are:

	rawName: The term name

	preferredTerm: The normalised term name

	confidence_score: always 0.0 because no disambiguation took place in a KB access

	wikipediaExternalRef: unique identifier of the concept in wikipedia

	wikidataId: unique identifier of the concept in wikidata

	definitions: list of wikipedia definitions (usually in wikipedia a concept contains one and only one definition). Each definition is characterized by three properties:

	definition: The text of the definition

	source: The knowledge base from which the definition comes from (in this case can be wikipedia-en, wikipedia-de and wikipedia-fr)

	lang: the language of the definition

	categories: This provides a list of Wikipedia categories7 directly coming from the wikipedia page of the disambiguated entity. Each category is characterised by the following properties:

	category: The category name

	source: The knowledge base from which the definition comes from.

	pageId: the Id of the page describing the category

	domains: For each entry, Wikipedia provides a huge set of categories, that are not always well curated (1 milion categories in the whole wikipedia). Domains are generic classification of concepts, they are mapped from the wikipedia categories.

	multilingual: provides references to multi-languages resources referring to the same entity. E.g. the entity country called Austria is Österreich in German wikipedia and Autriche in French wikipedia. The page_id provided here relates to the language-specific Wikipedia (e.g. in the above example the page_id for the country Autriche in the French Wikipedia is 15).

Term Lookup

This service is used to search terms in the knowledge base. This service is useful to verify how many ambiguity a certain term can generate.

Response status codes

In the following table are listed the status codes returned by this entry point.

GET /kb/term/{term}

	Parameters

	required

	name

	content-type value

	description

	required

	term

	String

	The term to be retrieved

	optional

	lang

	String

	The language knowledge base where to fetch the term from. Default: en.

	Request header

	required

	name

	value

	description

	optional

	Accept

	application/json

	Set the response type of the output

Language identification

Identify the language of a provided text, associated to a confidence score.

Response status codes

In the following table are listed the status codes returned by this entry point.

	HTTP Status code

	Reason

	200

	Successful operation.

	400

	Wrong request, missing parameters, missing header

	404

	Indicates property was not found

	500

	Indicate an internal service error

POST /language

	Parameters

	required

	name

	content-type value

	description

	required

	text

	String

	The text whose language needs to be identified

	Request header

	required

	name

	value

	description

	optional
optional

	Accept
Content-Type

	application/json
multipart/form-data

	Set the response type of the output
Define the format of the posted property

	Example response (ISO 639-1)

Here a sample of the response

{
 "lang":"en",
 "conf": 0.9
}

GET /language?text={text}

	Parameters

	required

	name

	content-type value

	description

	required

	text

	String

	The text whose language needs to be identified

	Request header

	required

	name

	value

	description

	optional

	Accept

	application/json

	Set the response type of the output

	Example response (ISO 639-1)

Here a sample of the response

{
 "lang":"en",
 "conf": 0.9
}

Sentence segmentation

This service segments a text into sentences. It is useful in particular for the interactive mode for indicating that only certain sentences need to be processed for a given query.

Beginning and end of each sentence are indicated with offset positions with respect to the input text.

Response status codes

In the following table are listed the status codes returned by this entry point.

POST /segmentation

	Parameters

	required

	name

	content-type value

	description

	required

	text

	String

	The text to be segmented into sentences

	Request header

	required

	name

	value

	description

	optional
optional

	Accept
Content-Type

	application/json
multipart/form-data

	Set the response type of the output
Define the format of the posted property

	Example response

Here a sample of the response

{
 "sentences": [
 {
 "offsetStart": 0,
 "offsetEnd": 7
 },
 {
 "offsetStart": 6,
 "offsetEnd": 21
 }
]
}

GET /segmentation?text={text}

	Parameters

	required

	name

	content-type value

	description

	required

	text

	String

	The text whose language needs to be identified

	Request header

	required

	name

	value

	description

	optional

	Accept

	application/json

	Set the response type of the output

	Example response

Here a sample of the response:

{
 "sentences": [
 {
 "offsetStart": 0,
 "offsetEnd": 7
 },
 {
 "offsetStart": 6,
 "offsetEnd": 21
 }
]
}

Customisation API

The customisation is a way to specialize the entity recognition, disambiguation and resolution for a particular domain.
This API allows to manage customisations for the entity-fishing instance which can then be used as a parameter by the entity-fishing services.

Customisation are identified by their name (or, also called profile in the API).

Customisation body

The JSON profile of a customisation to be sent to the server for creation and extension has the following structure:

{
 "wikipedia": [
 4764461,
 51499,
 1014346
],
 "language": {"lang":"en"},
 "texts": [
 "World War I (WWI or WW1 or World War One), also known as Germany and Austria-Hungary."
],
 "description": "Customisation for World War 1 domain"
}

The context will be build based on Wikipedia articles and raw texts, which are all optional. Wikipedia articles are expressed as an array of Wikipedia page IDs.

Texts are represented as an array of raw text segments.

Response status codes

In the following table are listed the status codes returned by this entry point.

	HTTP Status code

	Reason

	200

	Successful operation.

	400

	Wrong request, missing parameters, missing header

	404

	Indicates property was not found

	500

	Indicate an internal service error

GET /customisations

Returns the list of existing customisations as a JSON array of customisation names.

	Request header

	required

	name

	value

	description

	optional

	Accept

	application/json

	Set the response type of the output

	Example response

Here a sample of the response:

[
 "ww1",
 “ww2”,
 “biology”
]

GET /customisation/{name}

Retrieve the content of a specific customisation

	Parameters

	required

	name

	content-type value

	description

	required

	name

	String

	name of the customisation to be retrieved

	Request header

	required

	name

	value

	description

	optional

	Accept

	application/json

	Set the response type of the output

	Example response

Here a sample of the response

{
 "wikipedia": [
 4764461,
 51499,
 1014346
],
 "language": {
 "lang": "en"
 },
 "texts": [
 "World War I (WWI or WW1 or World War One), also known as the First World War or the Great War, was a global war centred in Europe that began on 28 July 1914 and lasted until 11 November 1918."
],
 "description": "Customisation for World War 1 domain"
}

Or in case of issues:

{
 "ok": "false",
 "message": "The customisation already exists."
}

POST /customisations

Creates a customisation as defined in the input JSON, named following the path parameter.
The JSON profile specifies a context via the combination of a list of Wikipedia article IDs and text fragments.
A text describing informally the customisation can be added optionally.

If the customisation already exists an error is returned.

	Parameters

	required

	name

	content-type value

	description

	required

	name

	String

	name of the customisation to be created

	required

	value

	String

	JSON representation of the customisation (see example)

	Request header

	required

	name

	value

	description

	optional

	Accept

	application/json

	Set the response type of the output

	Example response

Here a sample of the response

{
 "ok": "true"
}

Or in case of issues:

{
 "ok": "false",
 "message": "The customisation already exists."
}

PUT /customisation/{profile}

Update an existing customisation as defined in the input JSON, named following the path parameter.
The JSON profile specifies a context via the combination of a list of Wikipedia article IDs, FreeBase entity mid and text fragments.

A text describing informally the customisation can be added optionally.

	Parameters

	required

	name

	content-type value

	description

	required

	profile

	String

	name of the customisation to be updated

	Request header

	required

	name

	value

	description

	optional

	Accept

	application/json

	Set the response type of the output

	Example response

Here a sample of the response

{
 "ok": "true"
}

Or in case of issues:

{
 "ok": "false",
 "message": "The customisation already exists."
}

DELETE /customisation/{profile}

	Parameters

	required

	name

	content-type value

	description

	required

	profile

	String

	name of the customisation to be deleted

	Request header

	required

	name

	value

	description

	optional

	Accept

	application/json

	Set the response type of the output

	Example response

Here a sample of the response

{
 "ok": "true"
}

Or in case of issues:

{
 "ok": "false",
 "message": "The customisation already exists."
}

Evaluation

Datasets for long texts

It is possible to evaluate entity-fishing entity disambiguation models with several well-known available datasets. For convenience, the following datasets are present in the entity-fishing distribution:

	`ace`: this is a subset of the documents used in the ACE 2004 Coreference documents with 36 articles and 256 mentions, annotated through crowdsourcing, see [1].

	`aida`: AIDA-CONLL is a manually annotated dataset based on the CoNLL 2003 dataset, with 13881 Reuters news articlesand 27817 mentions, see [2]. Note that the raw texts of this dataset are not included in entity-fishing, they have to be obtained from NIST (free for research purpose). AIDA-CONLL dataset can be considered as the most significant gold data for entity disambiguation both in term of size, ambiguity rate and annotation quality. In addition to the complete AIDA-CONLL dataset, this corpus is divided into tree subsets that can be used for evaluation separately:

	`aida-train`: corresponds to the training subset of the CoNLL 2003 dataset

	`aida-testa`: corresponds to the validation subset of the CoNLL 2003 dataset

	`aida-testb`: corresponds to the test subset of the CoNLL 2003 dataset

	`aquaint`: this dataset has been created by Milne and Witten [3], with 50 documents and 727 mentions from a news corpus from the Xinhua News Service, the New York Times, and the Associated Press.

	`iitb`: manually created dataset by [4] with 50 documents collected from online news sources.

	`msnbc`: this dataset is based on 20 news articles from 10 different topics (two articles per topic) and contains a total of 656 mentions, see [5].

	`clueweb`: WNED-Clueweb 12 dataset is a large dataset created by [6] from the Clueweb corpura automatically - it is this far less reliable than the previous ones.

	`wikipedia`: similarly as the Clueweb dataset, this set has been created automatically by [6] from Wikipedia, thus also clearly less reliable.

	`hirmeos`: manually created dataset using open accessible books (licence CC-BY), financed from the European project H2020 Hirmeos [7].

All these reference datasets are located under data/corpus/corpus-long.

Evaluation commands

Use the following maven command with the above dataset identifier for running an evaluation:

$./gradlew evaluation -Pcorpus=[dataset]

For instance for evaluating against the testb subset of the AIDA-CONLL, use:

$./gradlew evaluation -Pcorpus=aida-testb

The evaluation process will provide standard metrics (accuracy, precision, recall. f1) for micro- and macro-averages for the entity disambiguation algorithm selected as ranker and for priors (as baseline).

The recall of the candidate selection with respect to the gold annotations is also provided (e.g. the proportion of candidate sets containing the expected answer before the ranking).

Generation of pre-annotated training/evaluation data

In case a new corpus needs to be created, entity-fishing includes the possibility to automatically generate an XML file of entity annotations from text or pdf files in the same format as the other existing corpus. These generated files can then be corrected manually and used as gold training or evaluation data, or they can be used for semi-supervised training.

For a given new corpus to be created, for instance the corpus toto, the following directory must be created: data/corpus/corpus-long/toto/
The documents part of this corpus must be placed under the subdirectories RawText and/or pdf.

If there is a directory called pdf or PDF, the process will extract information (title, abstract, body) from each pdf and save it as pdfFileName.lang.txt inside the RawText directory. The tool will then look into the subdirectory RawText and process the files *.txt found inside. If the files name is in the form filename.lang.txt then the lang will be used as reference, otherwise en will be the default choice.

Use the following maven command with the above dataset identifier for generating the annotation xml file:

$./gradlew annotatedDataGeneration -Pcorpus=[corpusname]

For instance, for a new corpus toto, with text or pdf documents prepared as indicated above:

$./gradlew annotatedDataGeneration -Pcorpus=toto

References

[1] Lev-Arie Ratinov, Dan Roth, Doug Downey, and Mike Anderson. Local and global algorithms for disambiguation to wikipedia. In Dekang Lin, Yuji Matsumoto, and Rada Mihalcea, editors, The 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the Conference, 19-24 June, 2011, Portland, Oregon, USA, pages 1375–1384. ACL. <http://www.aclweb.org/anthology/P11-1138>.

[2] Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bordino, Hagen Fürstenau, Manfred Pinkal, Marc Spaniol, Bilyana Taneva, Stefan Thater, and Gerhard Weikum. Robust disambiguation of named entities in text. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, EMNLP 2011, 27-31 July 2011, John McIntyre Conference Centre, Edinburgh, UK, A meeting of SIGDAT, a Special Interest Group of the ACL, pages 782–792. ACL. <http://www.aclweb.org/anthology/D11-1072>.

[3] David N. Milne and Ian H. Witten. Learning to link with wikipedia. In James G. Shanahan, Sihem Amer-Yahia, Ioana Manolescu, Yi Zhang, David A. Evans, Aleksander Kolcz, Key-Sun Choi, and Abdur Chowdhury, editors, Proceedings of the 17th ACM Conference on Information and Knowledge Management, CIKM 2008, Napa Valley, alifornia, USA, October 26-30, 2008, pages 509–518. ACM. DOI <https://doi.org/10.1145/1458082.1458150>.

[4] Sayali Kulkarni, Amit Singh, Ganesh Ramakrishnan, and Soumen Chakrabarti. Collective annotation of Wikipedia entities in web text. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD ‘09), Paris, France, 2009, pages 457-466. ACM. DOI: <https://doi.org/10.1145/1557019.1557073>

[5] Silviu Cucerzan. Large-scale named entity disambiguation based on Wikipedia data. In Jason Eisner, editor, EMNLP-CoNLL 2007, Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, June 28-30, 2007, Prague, Czech Republic, pages 708–716. ACL. <http://www.aclweb.org/anthology/D07-1074>.

[6] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to rank: from pairwise approach to listwise approach. In Zoubin Ghahramani, editor, Machine Learning, Proceedings of the Twenty-Fourth International Conference (ICML 2007), Corvallis, Oregon, USA, June 20-24, 2007, volume 227 of ACM International Conference Proceeding Series, pages 129–136. ACM. DOI <https://doi.org/10.1145/1273496.1273513>.

[7] HIRMEOS H2020 project. More information here [http://www.hirmeos.eu].

Train and evaluate

Trained models for entity recognition and disambiguation are provided in the project repository. The following section explains how to retrain the models.

Training with Wikipedia

Currently a random sample of Wikipedia articles is used for training. The full article content is therefore necessary and a dedicated database will be created the first time the training is launched. This additional database is used and is required only for training. You will need the Wikipedia XML dump corresponding to the target languages available in a directory indicated in the yaml config files by the parameter dataDirectory. A warning here, as this additional database contains the whole textual content of all Wikipedia articles (with wiki markups), it is quite big, around 7.6G GB for the English Wikipedia (dump from May 2020). This database (stored under the dbDirectory indicated in the language config file and called markupFull) will be built automatically if not present, so typically at first launch of the training for a given language, and the process will take a bit more than one hour for building the English version for example.

The following command will build the two models used in entity-fishing, the ranker and the selector model (Gradient Tree Boosting for the first one, Random Forest for the second one) and preliminary build the full article content database the first time for the English Wikipedia:

$./gradlew train_wikipedia -Plang=en

For other languages, replace the ending language code (en) by the desired one (fr, de, it, es, ar, zh, ru and ja are supported), e.g.:

$./gradlew train_annotate -Plang=fr
$./gradlew train_annotate -Plang=de

Models will be saved under data/models. ARFF training data files used to build the model are saved under data/wikipedia/training/.

Evaluation with Wikipedia

An evaluation is produced at the end of training base on a random sample of Wikipedia articles, providing macro- and micro-average precision, recall and f1-score.

Note that the ratio of disambiguated mentions in a Wikipedia article is low. As a consequence, the precision of our models will be very low because they are built for disambiguating a maximum of entities. Recall is probably a more meaningful measure when evaluating with Wikipedia.

For an evaluation of the NED aspect (ranker in our framework) with well-known datasets, which is much more standard and allows comparison with other similar works, see the evaluation section.

Training with an annotated corpus

It is possible to train the entity-fishing models with several well-known available datasets. For convenience, the datasets indicated here Evaluation are present in the entity-fishing distribution.

Use the following command with a dataset name and a language identifier for running a training with this dataset:

$./gradlew train_corpus -Pcorpus=aquaint -Plang=en

For instance for training with the train subset of the AIDA-CONLL, use:

$./gradlew train_corpus -Pcorpus=aida-train -Plang=en

entity-fishing also included the possibility to generate additional pre-annotated corpus, for instance to be further corrected manually. See Evaluation for the explanations.

The evaluation with annotated corpus is also described in the page Evaluation.

Creating entity embeddings

Entity embeddings are used to improve entity disambiguation. They are created from word embeddings and entity descriptions generated from Wikidata and Wikipedia. Embeddings resources are provided with the project data resources, so you normally don’t have to create yourself these embeddings. For reference, we document here how to create these entity embeddings. The process is as follow:

	Download available pretrained word embeddings for a target language - this could be for instance word2vec, FastText, or lexvec. Word embeddings need initially to be in the standard .vec format (a text format). word2vec binary format can be transformed into .vec format with the simple utility convertvec [https://github.com/marekrei/convertvec]

Note: English and Arabic word embeddings used in the current entity-fishing are Glove “flavor”. Arabic embeddings are available at https://archive.org/details/arabic_corpus, see https://ia803100.us.archive.org/4/items/arabic_corpus/vectors.txt.xz. Other languages are using fastText word embeddings.

	Quantize word embeddings

Quantize will simplify the vector given an acceptable quantization factor (by default the error rate for quantizing is 0.01, but it could be changed with the argument -Perror)

$./gradlew quantize_word_embeddings -Pi=/media/lopez/data/embeddings/glove-vectors.vec -Po=/media/lopez/data/embeddings/word.embeddings.quantized

Here some Glove word embeddings glove-vectors.vec given as input (-i) will be quantized and saved as word.embeddings.quantized.
By default, the flag -hashheader is used and indicates that the first line (a header to be ignored) must be skipped. In case there is no header, -hashheader should be removed in the corresponding gradle task quantize_word_embeddings (see file build.gradle).

3. Create Wikidata entity description to be used for producing entity embeddings. The command for creating description is the following one:

$./gradlew generate_entity_description -Plang=en

Replace the en argument by the language of interest.

The generated description are saved under data/embeddings/en/), given the language of interest (here en).

	Create entity embeddings from the generated description.

This step might take a lot of time and exploiting multithreading is particularly hepful. The number of threads to be used is given by the argument -n:

$./gradlew generate_entity_embeddings -Pin=entity.description -Pv=word.embeddings.quantized -Pout=entity.embeddings.vec -Pn=10

The following parameters are available:

	-h: displays help

	-in: path to an entity description data file

	-v: the path to the word embedding file in .vec format (e.g. one originally of word2vec, faster, lexvec, etc.), optionally quantized

	-out: path to the result entity embeddings file (not quantized, this is to be done afterwards)

	-n: number of threads to be used, default is 1 but it is advice to used as much as possible

	-rho: rho negative sampling parameters, if it’s < 0 use even sampling, default is -1 (must be an integer)

	-max: maximum words per entity, if < 0 use all the words, default is -1 (must be an integer)

	Quantize entity embeddings

Finally, similarly as the steps 2., we apply a quantization to the entity embeddings:

$./gradlew quantize_word_embeddings -Pi=/media/lopez/data/embeddings/entity.embeddings.vec -Po=/media/lopez/data/embeddings/entity.embeddings.quantized

The entity embeddings are now ready to be loaded in the embedded database of entity-fishing.

	Copy the quantized embeddings files (e.g. entity.embeddings.quantized) under the entity-fishing data repository (the one containing the csv files). entity-fishing expects compressed files with .gz extension: word.embeddings.quantized.gz and entity.embeddings.quantized.gz. Starting entity-fishing will load automatically the embeddings in the embedded database LMDB as binary data.

License and contact

entity-fishing is distributed under Apache 2.0 license [http://www.apache.org/licenses/LICENSE-2.0].
The dependencies used in the project are either themselves also distributed under Apache 2.0 license or distributed under a compatible license.

The documentation is distributed under CC-0 [https://creativecommons.org/publicdomain/zero/1.0/] license and the annotated data under CC-BY [https://creativecommons.org/licenses/by/4.0/] license.

If you contribute to entity-fishing, you agree to share your contribution following these licenses.

Main author and contact: Patrice Lopez (<patrice.lopez@science-miner.com>)

Index

Annotation Guidelines

Adding interpretative linguistic information to a corpus (Leech, 2005) in order to have a value-added corpus is a practice called corpus annotation.
As an enrichment of the raw corpus, the annotation activity itself can be done either automatically or manually.

In entity-fishing, the annotation is supposed to identify named entities based on the context and then to group this entities into one of 27 set of classes.
These 27 classes refers to classes in Grobid-Ner [http://grobid-ner.readthedocs.io/en/latest/class-and-senses/].

Basically, the principle of annotation in this system is similar to the principle of annotation in Grobid-Ner as well as other Conditional Random Field (CRF) models which can bootstrap training data.
Entity-fishing can [generate training data](train.rst) from any text and Pdf files, labeling tokens with the named entity classes based on the existing model.
Further activity, human annotators correct the generated training data by modifying the labels produced for each token.
This curated training data can then be added to the existing training data in order to get a new improved model.

Format of XML File
As explained in [Generation of pre-annotated training/evaluation data](evaluation.rst), it is possible for entity-fishing to generate an XML file containing entity annotations from text or pdf files for a new corpus in the same format as the other existing ones.
These files can then be corrected manually and can be used as gold training or evaluation data as well as for semi-supervised training data.

The example of the XML file result (data/corpus/corpus-long/) can be seen as follow:

```
<?xml version=”1.0” encoding=”UTF-8” standalone=”no”?>
<ACE2004.entityAnnotation>



	<document docName=”20001115_AFP_ARB.0093.eng”>

	
	<annotation>

	<mention>Bandar Seri Begawan</mention>
<wikiName>Bandar Seri Begawan</wikiName>
<offset>2</offset>
<length>19</length>





</annotation>
<annotation>


<mention>AFP</mention>
<wikiName>Agence France-Presse</wikiName>
<offset>29</offset>
<length>3</length>




</annotation>





</document>




</ACE2004.entityAnnotation>

```

In this example, the file contains the name of the documents (text or pdf files) being processed and the annotation results for each document.
These annotation results represent the entities containing the mentions and, if it exists, the disambiguation results.
In entity fishing, the mentions refer to the tokens and their position in the text (the offset and the length), but they have no link to the real entity (WikiName and Wikidata references, in this case); WikiName and Wikidata ID are set to -1 or Nil/null values.
Meanwhile, the real entity refers to Wikipedia and/or Wikidata article which respectively refers to the Wikipedia page ID (e.g. 5843419 for France’s page) and the Wikidata concept ID (e.g. Q142 for the same entity).

When a certain entity is found in Wikipedia, the page title is also stored in the <wikiName> field with the reason that it is useful when only the lemma matches the Wikipedia’s article.
For example, anthropologist is found in Wikipedia as anthropology.

Correction
Basically, there are two main actions to be done for corrections:
1. Find the missing mentions and/or entities
2. Correct the wrong mentions and/or entities

During the correction process of annotation results which is done manually by human annotators, each mention has to be reviewed whether it has the correct meaning regarding the context of the text.
In order to help the annotators, entity fishing provides also a service called Term Look-up which is designed to provide a list of disambiguation candidates on the basis of terms.
For example, for a term France, entity-fishing gives 577 ambiguous concepts to choose from.

Let’s take an example of how correcting the annotations. Given the following text:

`
À partir des différences de préoccupations politiques et de traitement des métis en Inde britannique et en Indochine française.
`

and the following annotations are generated as result:
```
<document>



	<annotation>

	<mention>Inde</mention>
<wikiName>Inde</wikiName>
<wikidataId>Q18384486</wikidataId>
<wikipediaId>7503528</wikipediaId>
<offset>84</offset>
<length>4</length>





</annotation>
<annotation>


<mention>Indochine française</mention>
<wikiName>Indochine française</wikiName>
<wikidataId>Q140025</wikidataId>
<wikipediaId>1821096</wikipediaId>
<offset>107</offset>
<length>19</length>




</annotation>




</document>
```

Here in the example, it can be seen that there are two types of errors:
1. Find the missing mentions and/or entities
The first mention and entity is not correct since it should be Inde britannique.
As a consequence, all the fields of the annotation shall be corrected, including the offset and the length.

2. Correct the wrong mentions and/or entities
Meanwhile, the second mention is correct, but the entity which it refers to is wrong, since it corresponds to Invasion japonaise de l’Indochine instead of Indochine française.
In this case, <wikidataId> <wikiName> and <wikipediaId> need to be corrected as with Wikipedia Id 8846 and Wikidata Id Q185682.

The corrected result should be like this:

```
<document>



	<annotation>

	<mention>Inde britannique</mention>
<wikiName>Inde britannique</wikiName>
<wikidataId>Q18384486</wikidataId>
<wikipediaId>7503528</wikipediaId>
<offset>84</offset>
<length>16</length>





</annotation>
<annotation>


<mention>Indochine française</mention>
<wikiName>Indochine française</wikiName>
<wikidataId>Q185682</wikidataId>
<wikipediaId>8846</wikipediaId>
<offset>107</offset>
<length>19</length>




</annotation>




</document>
```

Apart from this process, peer review is needed when doing the annotation corrections at least with two-three different annotators in order to reach mutual agreement.

 _static/plus.png

_images/nerdConsole3.png
Service to call | disambiquate - text]

{

“text: ™,

“shorTexs™ “concrete purp sensor’,
“temVestor' [l

“language": {

‘Submit

Entities | Response

concrete

concrete pump

pump

Conf: 1

Concrete is a composite material composed of coarse aggregate bonded together with a
fluid cement that hardens over time. Most concretes used are lime-based concretes such
as Portland cement concrete or concretes made with other hydraulic cement, such as
ciment fondu. However, asphalt concrete, which is frequently used for road surface, Is also
atype of concrete, where the cement material s bitumen, and polymer concrete are
‘sometimes used where the cementing material s a polymer.When aggregate is mixed
together with dry Portland cement and water, the mixture forms a fluid slurry that is easily
poured and molded into shape. The cement reacts chemically with the water and other
ingredients to form a hard matrix that binds the materials together into a durable stone-ike
‘material that has many uses. Often, additives (such as pozzolan or superplasticizer) are
included in the mixture to improve the physical properties of the wet mix or the finished
‘material. Most concrete is poured with reinforcing materials (such as rebar) embedded to
provide tensile strength, yielding reinforced concrete.

Conf: 1

A concrete pump is a machine used for transferring liquid concrete by pump. There are
1w types of concrete pumps. The first type of concrete pump is attached to a truck or
longer units are on semitrallers. It Is known as a boom concrete pump because it uses a
remote-controlled articulating robot arm (called a boom) to place concrete accurately.
Boom pumps are used on most of the larger construction projects as they are capable of
pumping at very high volumes and because of the labour saving nature of the placing
boom. They are a revolutionary altemative to line-concrete pumps.

Conf: 1

A pump is a device that moves fluids (liquid or gas), or sometimes siurries, by
‘mechanical action. Pumps can be classified into three major groups according to the
‘method they use to move the fluid: direct it displacement, and gravity pumps.

wwi
PubMed_1
PubMed_2
HAL_1
taliano_1

Reuters_1
Reuters_2
French_1

German_t
Spanish_1

_images/nerdConsole4.png
Senvice to call | disambiquate - text 4

wikipedia’ A wwt Reuters_1
y PubMed_1 Reuters_2
nbest”: false,

"sentence”: true, PubMed 2 French_1

“customisation

HAL_1 German_t
haliano_1 Spanish_1
Submit

Annotations Response

But the failed Russian invasion, causing the fresh German troops to move to the east, allowed the tactical Allied victory at the First Battle of the Mame.
Unfortunately for the Allies, the pro-German King Constantine I dismissed the pro-Allied government of E. Venizelos before the Allied expeditionary force could arve.
Beginning in 1915, the ltalians under Cadoma mounted eleven offensives on the Isonzo front along the Isonzo River, northeast of Trieste.

CRAFNESN

At the Siege of Maubeuge about 40000 French soldiers surrendered, at the battle of Galicia Russians took about 100-120000 Austrian captives, at the Brusilov Offensive about 325 000
t0 417 000 Germans and Austrians surrendered to Russians, at the Battle of Tannenberg 92,000 Russians surrendered.

6 | After marching through Belgium, Luxembourg and the Ardennes, the German Army advanced, in the latter half of August, into northem France where they met both the French army,

BATTLE OF TANNENBERG

Type: EVENT

(D oo S surenderea to (D, t the CTTATIETIE

surrendered. Domains: Administration,
Military

cont: 0.6996

References: (W I

_images/nerdConsole1.png
entity-fishing

About Services

About entity-fishing - Entity Recognition and Disambiguation
“This text analysis console/demo is based on a set of JSON REST services.
For more detalls check the GitHub repo and the documentation.

Contact: Patrice Lopez.

_static/up-pressed.png

_images/nerdConsole2.png
About Services

Senvice to call | disambiquate - text 4
{ u wwi Reuters_1
“text": "Mexico: Recovery excitement brings Mexican markets to life\n Henry Tricks\n Mexico PubMed 1 Reuters 2
Gityin Emerging evidence tha Mexica's economy was back on the fecovery track sent Mexican markels | pupiied 2 French 1

nto a buzz of excitement Tuesday, with stocks closing at record highs and inferest rates at 19-month lows.\n ALt Coman 1
\"Mexico has been trying to stage a recovery since the beginning of this year and i's always been getting . = rman_
haart of ool in tarme ot findamantale \" sair Matthaw Linman af | shman Brmthare in Naw Vark \n haliano_1 Spanish_1

Annotations Response

GROSS DOMESTIC PRODUCT

Recovery excitement bings markets to e

Henry Tricks Nomalized: Gross domestic
product
Emerging evidence that economy was back on the recovery track sert markets o a Domains: Finance

buzz of exctement Wit stocks closing at record highs and ntrest ates at (Gmonth ows cont: 0.832

A s been tying to stage a recovery since the beginning of ths year and s aways been getiing

ahead of Hselt in terms of fundamentals,” said of in Gross domestic product (GDP) is a monetary measure of the
‘market value of all final goods and services produced in a

“Now we'e at the point where the fundamentals are with us. The history is now falling out of view." period (quarterly or yeariy) of time. Nominal GDP estimates

“That history is one etched ino the minds of al investors in [an economy in crisis since are commonly used to determine the economic performance of
2 whole country o region, and to make infemational

(IR = free-faing (253 and stusboriy high ntrest ates)
comparisons. Nominal GDP per capita doss o, however,
“This week, however, second-quarter (TS TERSTISIS) was reporied up much reflect differences In the cost of living and the Inflation rates of

_static/up.png

_images/screen3.png
with previous failed attempts at [cardiac]
resynchronization therapy]

Anoop K. Shetty!*, Simon G. Duckett!?, Julian Bostock!, Eric Rosenthall,
and C. Aldo Rinaldi’:2

"Cardiothorase Department, Guys and 5t Thomas' Hosptal NHS Foundation Trust, London, UK: and *Kings College London, Westminser Bridge Road, London SETTEH, UK

R 2 Sptbe 2010 ccptd e e 17 Jrsy 2013 s Pulehesifpn 22 ey 201 Py —
THERAPY
Aims Problems with implanting aeft ventricular] (LV) lead during|Gardiac resynchronization therapy](CRT) procedures are
ot uncommon and may occur for a variety of reason including [prenic nerve stmubtion (PNS) and figh capture Normalized: Cardiac
thresholds. We aimed to perform successful CRT in patients with previous LV lead problems using the multiple resynchronization therapy
pacing configurations available with the 5 Jude] Quartet model 1458Q quadripolar LV lead to overcome PRE[or omatns: Surgeey
high capture thresholds.
cont: 0.701
Methods Four patients with previous faled attermpts 1t LV lead implantation underwent a further attempt at CRT using 2 Quartet
and results lead. Inall four cases, successful CRT was achieved uing a Quartet lead placed in 2 branch o thelcororary sinud Pro-
blems wich PREJor high capture thresholds were seeninall four ptients but were successfuly overcome. Satifactory. An Implanted cardiac resynchronization device Is a
lead parameters were seen at[rplan}, pre-discharge, and at short-term follow-up. (EF £ Slweeks). medical device used In cardliac resynchronization
therapy (CRT). It resynchronizes the contractions of the
Conclusion ‘The Quartet lead alows[TO]different pacing vectors to be used and may overcome common pacing problems because heart’s ventricles by sending tiny electrical impuises to the
of the multple pacing configurations available. Problems with either PRGJor unsatisfactory pacing parameters experi- e e YAl e
enced during CRT may be resolved simply by changing the pacing configuration using ths quadripolar lead system. througnout the body more effciently. CAT efbrilators

(CRT-D) also incorporate the additional function of an
implantable cardioverter-defibrillator, to quickly terminate an
‘abnormally fast, life-threatening heart rhythm. CRT and
CRT-D have become Increasingly important therapeutic
options for patients with moderate and severe heart failure.

Keywords [CRT] » Quadripolar lead » PRrenic]nerve stimulation (PNS) o Failed [rplant

Introduction cinicaly relevant PR] occurred in [EEE] o patients at [B EE—
[FE] o follow-up and that s occurrence was highest n — B

(G reomehronizaion e (CRT) improves R Alire] those patents for whom the LV lead was placed at pacig sies JSTORBPIID cardiaofesynctronizaton-herapy
mptoms] and reduces hospilizations and [EK of death| n most associated with reverse remodelling, In the aforementioned

patents with [SF vemAculr] (1Y) dysfunction and a broad study, [patints required an LV lead revison or [CRT]to be W

BRS." Failure to [raptand] an [¥] ead during atterpted ERT] trned off and [ihoda] programmability (the <apabilty to rererences: W1

e it o155 o ot T i e o 5 3 oS i o v R 1 ot P

inabilty to cannulte the Eororiry SIGe](CS) ostim, an inabilty [Eathadd) was descrbed a5 3 possble soltion to the prablem

o pass the LV lead into 3 CS branch, unsatsfacory pacing par- of PRJ. Indeed, other studies™ fave shown that the avalabily

ameters, or e merve] simulation @), In a study of [S7] of multile pacing confgurations may overcome problems with

Comsecutve paients undergoing [CRY, Bt et ol showed tat high pachg capture thresholds and PR

¥ Corresponding author. Tek 44 20 7188 8376: fux ++ 20 7188 5442, Emat anoopshety@kelac
Published on behalf of the European Society of Cardiology. Al rights reserved © The Author 2011. For permissions please emait journsls permissions@oup.com.

_images/screen5.png
wind power

energy storage 0.0966

forecast errors 0.0674

storage system 0.0654

wind power

cont: 04734
Preferred term: Wind power

Wind power s the use of ai flow thouigh wind turbine to mecharicaly power generators or eleirc power. Wind power, as
‘an aternative to burning foss fue,is plentiul,renewable, widely distriouted, dean, produces o greenhouse gas emissins
during operation, consumes no water, and uses it land. The net effects on the environment ar far fess problematc than
those of nonrenewable power sources Wind farm consistof many individual wind tubines which are connected 0 the eletrc
power transmission network. Onshore wind is an nexpensive source of electi power, competiive wit or n many piaces
cheaper than coalor gas plants. Offshore wind i steadier and stronger than on land, and offshore farms have less visual
impac, but construction and maintenance costs are considerably higher. Smal onshore wind farms can feed some energy
into the grid or provide electric power o solated of-grid locations.

energy storage
cont: 0.4453
Preferred term: Fiywhesl eneray siorage

Fiywheel energy storage (FES) works by acoslerating a rotor (fywheel) 1o a very high speed and maintaning the energy n
the system as rotational energy. When eneray is exiracted from the system, the fywheefs rotafional speed s reduced as a
‘consequence of the princile of conservation of energy: adding energy o the system correspondingly resuls n an increase in
the speed o the fywheel

forecast errors
cont: 03112
Preferred term: Forecast error

In statisto, 2 forecast error isthe diference between the actualor real and the predicted o forecast value of a time series
or any other phenomenon of nterest. Since the forecast error is derved from the same scale ofdata, comparisons between
the forecast errorsof iferent seres can only be made when the series are on the same scale.

storage system

cont: 02996
Preferred term: Data storage

Data storage is the recording (storng) of information (data). Recording is accomplshed by vitually any form of energy. DNA
‘and RNA, handwriting, phonograph recording, magnetic tape, and optical disc are all examples of storage media. Electronic

_images/nerdConsole5.png
Mexico: Recovery excitement brings Mexican markets to life. Cendari

PubMed_1 Reuters_2
PubMed 2 French_1

HAL_1 German_1
Submit

Annotations Response

"nbest": false,

"text": "Mexico: Recovery excitement brings Mexican markets to life.",
"language": {
“en",
0.9999977505831784
Y
"entities": [

{

nerd_score": "©.47886873578089756",
nerd_selection_score": "0.8605133879482593",
"sense": {

“fineSense": "country/Ni"
3
"wikipediaExternalRef": "3966054" .

_images/screen1.png
1GARETTE SWOKE o [T ARWAY] epiTHELIAL | senescence Ll eSS TNy priioaenesis K

(2D athougn the undertying mecharisms remain largely
urkoonn rcressed i (TN o G0 IR | o omers sgenes g
an (g <xposes hmn () GRGRTREENEY o s o i G5-nvees) RGN %j}’&g
s unclear. In this study, we first analyzed expression of (SRR and (CENELIAL)
e) (ORI o v T v R oo v
o D e T AT 1y
e e
B0 ori) | Sund ramiy momor 1 SHADY < et 1 s
B e o v R e

CLUSTERED REGULARLY INTERSPAGED SHORT PALINDROWC REPEATS] CrisPr J P LRERSEIEER s I
alel with increased GENVCECIEEIE] markers (). @D and

Normalized: Mothers against

Domains: Biology, Engineering

cont: 0.7665

EEIEEZAI approach. Finally, we examined whether (EIEEIET
EPrTHE AL [SENESCENCE Rttt
(IR vias found in

cmuostr croo [L ucor Y amuseJ e ceLs S oG O 4008
QR oreover @ ot @) wd\rmwr(\ ured ruman G HGNCgenesymbol SMAD'
(&2 expression, and increased rolease of uion of oumo 601595

w" cary () 9 ncos () TR EEIECES Loty Subckons of Q0747206

1o the (OEX) GESEARR and promoted (7S] (ERMGEINY EEIESEIES vie activation of the EITET) AR Ensemb Gene 1D ENSG00000170365
Our findings highiight an important contibution of (R In promoting (UEIZY) RN EEEEAIES upon HomoloGens 1D 21198

) exposure. I RS CIEETNETS et (RN 2ccumuiate in (& exposed (IS Refseq ANAID XM_011531964
could contrbute substantaly to IS G (EED elopment and progression RefSeq ANAID XM_011531964

RefSeq RNAID XM_011531964

_images/screen6.png
ONLINE (1)

Guest 56
ENTER NAME

Fontv||Sizev| Color~v||B |7 |U |&|[i=|i=|=

A
lil
.
M|
]
1]
1]

I

After marching through CEXE0], and the (LTI, the advanced, in
the latter half of 5751, into northern ZYTTE3 where they met both the [G117, under

EEEEZEREE, and the initial six divisions of the [iEE G Gl G AL =g, under
ELFIEETED. The ZETE) legion was assaulted by a around the rivers.
}A series of engagements known as the ensued. Key battles included the
and the [0 In the former battle the was almost

destroyed by the German 2nd and and the latter delayed the (LX) advance by a
day.

generic j only NER

Type: NATIONAL
Normalized: French people
Domains: Sociology

conf: 0.5047

The French are an ethnic group and nation who are
identified with the country of France. This
connection may be legal, historical, or cultural.

Reference: . I

_images/screen8.png
concrete

concrete pump

pump

Conf: 0.3606

Concrete is a composite material composed of fine and coarse aggregate bonded together with a fluid cement
(cement paste) that hardens (cures) over time. In the past lime cement binders were often used, such as lime
putty, but sometimes with other hydraulic cement, such as a calcium aluminate cement or with Portiand cement
o form Portland cement concrete (for its visual resembiance to Portiand stone). Many other non-cementitious.
types of concrete exist with other methods of binding aggregate together, including asphalt concrete with a
bitumen binder, which is frequently used for road surface, and polymer concrete that use polymers as a binder

Conf: 0.9478

A concrete pump is a machine used for transferring liquid concrete by pump. There are two types of concrete
pumps.The first type of concrete pump is attached to a truck or longer units are on semi-trallers. It is known as.
‘2 boom concrete pump because It uses a remole-controlled articulating robot arm (called a boom) o place
concrete accurately. Boom pumps are used on most of the larger construction projects as they are capable of
pumping at very high volumes and because of the labour saving nature of the placing boom. They are a
revolutionary alternative to line-concrete pumps.

Conf: 0.327

A pump s a device that moves fluids (liquid or gas), or Sometimes siurries, by mechanical action, typically
‘converted from electrical energy into Hydraulic energy. Pumps can be classified into three major groups
according fo the method they use to move the fuid: direct i, displacement, and gravity pumps. Pumps operate
by some mechanism (typically reciprocating o rotary), and consume energy to perform mechanical work
moving the fiuid. Pumps operate via many energy sources, including manual operation, electricity, engines, or
wind power, and come in many sizes, from microscopic for use in medical applications, to large industrial
pumps.

Conf: 0.3661

In the broadest definition, a sensor is a device, module, machine, or subsystem whose purpose is to detect
events or changes in its environment and send the information to other electronics, frequently a computer
processor. A sensor Is always used with other electronics.

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 entity-fishing - Entity Recognition and Disambiguation

 		
 Overview

 		
 Motivation

 		
 Tasks

 		
 Summary

 		
 How to cite

 		
 License and contact

 		
 Install, build, run, and monitor

 		
 Install, build, and run

 		
 Metrics and monitoring

 		
 Creating a new Knowledge Base version

 		
 entity-fishing Console

 		
 entity-fishing REST API

 		
 entity-fishing query processing

 		
 Supported languages

 		
 Response status codes

 		
 REST query

 		
 Query format description

 		
 Response

 		
 Knowledge base concept retrieval

 		
 Response status codes

 		
 Term Lookup

 		
 Response status codes

 		
 Language identification

 		
 Response status codes

 		
 Sentence segmentation

 		
 Response status codes

 		
 Customisation API

 		
 Customisation body

 		
 Response status codes

 		
 Evaluation

 		
 Datasets for long texts

 		
 Evaluation commands

 		
 Generation of pre-annotated training/evaluation data

 		
 References

 		
 Train and evaluate

 		
 Training with Wikipedia

 		
 Evaluation with Wikipedia

 		
 Training with an annotated corpus

 		
 Creating entity embeddings

 		
 License and contact

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

