
entity-fishing documentation
Release 0.0.5

Patrice Lopez

Jul 07, 2022

Contents

1 Overview 1
1.1 Motivation . 1
1.2 Tasks . 1
1.3 Summary . 4
1.4 How to cite . 5
1.5 License and contact . 5

2 Install, build, run, and monitor 7
2.1 Install, build, and run . 7
2.2 Metrics and monitoring . 9
2.3 Creating a new Knowledge Base version . 9

3 entity-fishing Console 11

4 entity-fishing REST API 15
4.1 entity-fishing query processing . 15
4.2 Knowledge base concept retrieval . 28
4.3 Term Lookup . 30
4.4 Language identification . 31
4.5 Sentence segmentation . 32
4.6 Customisation API . 33

5 Evaluation 39
5.1 Datasets for long texts . 39
5.2 Evaluation commands . 40
5.3 Generation of pre-annotated training/evaluation data . 40
5.4 References . 40

6 Train and evaluate 43
6.1 Training with Wikipedia . 43
6.2 Evaluation with Wikipedia . 44
6.3 Training with an annotated corpus . 44
6.4 Creating entity embeddings . 44

7 License and contact 47

i

ii

CHAPTER 1

Overview

1.1 Motivation

One of the backbone of the activities of scientists regarding technical and scientific information at large is the identifi-
cation and resolution of specialist entities. This could be the identification of scientific terms, of nomenclature-based
expressions such as chemical formula, of quantity expressions, etc. It is considered that between 30 to 80% of the
content of a technical or scientific document is written in specialist language (Ahmad, 1996). Researchers in Digital
Humanities and in Social Sciences are often first of all interested in the identification and resolution of so-called named
entities, e.g. person names, places, events, dates, organisation, etc. Entities can be known in advance and present in
generalist or specialized knowledge bases. They can also be created based on open nomenclatures and vocabularies
and impossible to enumerate in advance.

The entity-fishing services try to automate this recognition and disambiguisation task in a generic manner, avoiding as
much as possible restrictions of domains, limitations to certain classes of entities or to particular usages.

1.2 Tasks

entity-fishing performs the following tasks:

• entity recognition and disambiguation against Wikidata in a raw text, partially-annotated text segment,

1

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.50.7956&rep=rep1&type=pdf

entity-fishing documentation, Release 0.0.5

• entity recognition and disambiguation against Wikidata at document level, for example a PDF with layout posi-
tioning and structure-aware annotations,

• search query disambiguation (the short text mode) - below disambiguation of the search query “concrete pump
sensor” in the service test console,

2 Chapter 1. Overview

entity-fishing documentation, Release 0.0.5

• weighted term vector disambiguation (a term being a phrase),

1.2. Tasks 3

entity-fishing documentation, Release 0.0.5

• interactive disambiguation in text editing mode.

1.3 Summary

For an overview of the system, some design, implementation descriptions, and some evaluations, see this Presentation
of entity-fishing at WikiDataCon 2017.

4 Chapter 1. Overview

https://grobid.s3.amazonaws.com/presentations/29-10-2017.pdf/
https://grobid.s3.amazonaws.com/presentations/29-10-2017.pdf/

entity-fishing documentation, Release 0.0.5

Supervised machine learning is used for the disambiguation, based on Random Forest and Gradient Tree Boosting
exploiting various features. The main disambiguation techniques include graph distance to measure word and entity
relatedness and distributional semantic distance based on word and entity embeddings. Training is realized exploiting
Wikipedia, which offers for each language a wealth of usage data about entity mentions in context. Results include in
particular Wikidata identifiers and, optionally, statements.

The API uses a full Query DSL with many customization capacities. It offers for instance the possibility to apply
filters based on Wikidata properties and values, allowing to create specialised entity identification and extraction (e.g.
extract only taxon entities or only medical entities in a document) relying on million entities and statements present in
Wikidata.

The tool currently supports 11 languages, English, French, German, Spanish, Italian, Arabic, Japanese, Chinese (Man-
darin), Russian, Portuguese and Farsi. For English and French, a Name Entity Recognition based on CRF grobid-ner is
used in combination with the disambiguation. For each recognized entity in one language, it is possible to complement
the result with crosslingual information in the other languages. A nbest mode is available. Domain information are
produced for a large amount of entities in the technical and scientific fields, together with Wikipedia categories and
confidence scores.

The tool is developed in Java and has been designed for fast processing (at least for a NERD system, around 1000-2000
tokens per second on a medium-profile linux server single thread or one PDF page of a scientific articles in less than
1 second), with limited memory (at least for a NERD system, here 3GB of RAM as minimum) and to offer relatively
close to state-of-the-art accuracy (more to come!). A search query can be disambiguated in 1-10 milliseconds. entity-
fishing uses the very fast SMILE ML library for machine learning and a JNI integration of LMDB as embedded
database.

1.4 How to cite

If you want to cite this work, please refer to the present GitHub project, together with the [Software Heritage](https:
//www.softwareheritage.org/) project-level permanent identifier. For example, with BibTeX:

@misc{entity-fishing,
title = {entity-fishing},
howpublished = {\url{https://github.com/kermitt2/entity-fishing}},
publisher = {GitHub},
year = {2016--2022},
archivePrefix = {swh},
eprint = {1:dir:cb0ba3379413db12b0018b7c3af8d0d2d864139c}

}

1.5 License and contact

entity-fishing is distributed under Apache 2.0 license. The dependencies used in the project are either themselves also
distributed under Apache 2.0 license or distributed under a compatible license.

The documentation is distributed under CC-0 license and the annotated data under CC-BY license.

If you contribute to entity-fishing, you agree to share your contribution following these licenses.

Main author and contact: Patrice Lopez (<patrice.lopez@science-miner.com>)

1.4. How to cite 5

https://github.com/kermitt2/grobid-ner
https://haifengl.github.io/smile/
https://github.com/deephacks/lmdbjni
https://www.softwareheritage.org/
https://www.softwareheritage.org/
http://www.apache.org/licenses/LICENSE-2.0
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/licenses/by/4.0/
mailto:patrice.lopez@science-miner.com

entity-fishing documentation, Release 0.0.5

6 Chapter 1. Overview

CHAPTER 2

Install, build, run, and monitor

2.1 Install, build, and run

entity-fishing requires JDK 1.8 or higher. It supports Linux-64. Mac OS environments should work fine, but it is
unofficially supported. Below, we make available the up-to-date and full binary index data for Linux-64 architecture.

Running the service requires at least 3GB of RAM for processing text inputs, but more RAM will be exploited if avail-
able for speeding up access to the compiled Wikidata and Wikipedia data (including Wikidata statements associated
to entities) and for enabling high rate parallel processing. In case PDF are processed, a mimimum of 8GB is required
due to additional PDF parsing and structuring requirements. For parallel processing of PDF exploiting multhreading
(e.g. 10 parallel threads), 16GB is recommended.

After decompressing all the index data, up to 100 GB of disk space will be used if you wish to use all the supported
languages (en, fr, de, it, es, ar, zh, ru, ja, pt, fa) - be sure to have enough free space. For running English language only,
you will need around 50 GB. SSD is highly recommended for best performance and experience, in particular with a
low amount of available RAM (e.g. RAM < 4GB).

First install GROBID and grobid-ner, see the relative instruction of GROBID and grobid-ner.

You need to install latest current stable version 0.7.1 of GROBID and grobid-ner. For GROBID:

Clone GROBID source code from github, latest stable version (currently 0.7.1):

$ git clone https://github.com/kermitt2/grobid.git --branch 0.7.1

Then build Grobid, in the main directory:

$ cd grobid
$./gradlew clean install

The path to grobid-home shall indicated in the file data/config/mention.yaml of the entity-fishing project,
for instance:

path to the GROBID home (for grobid-ner, grobid, etc.)
grobidHome: ../grobid/grobid-home/

7

http://github.com/kermitt2/grobid
http://github.com/kermitt2/grobid-ner

entity-fishing documentation, Release 0.0.5

For grobid-ner now, under grobid/, install grobid-ner:

$ git clone https://github.com/kermitt2/grobid-ner.git

Then build grobid-ner, in the sub-project directory:

$ cd grobid-ner
$./gradlew copyModels
$./gradlew clean install

Install entity-fishing:

$ git clone https://github.com/kermitt2/entity-fishing.git

Then install the compiled indexed data:

1. Download the zipped data files corresponding to your environment. The knowledge-base (Wikidata, db-kb.
zip) and the English Wikipedia data (db-en.zip) must always been installed as minimal set-up. You can
then add your languages of choice at the following links. Total is around 29 GB compressed, and around 90 GB
uncompressed. The data for this version 0.0.5 correspond to the Wikidata and Wikipedia dumps from Feb.,
1st 2022. The Knowledge Base part contains around 96 million entities. In this available KB data file, only the
statements for entities having at least one Wikipedia page in one of the 9 supported languages are loaded (it’s
possible to load all of them by regenerating the KB with a dedicated parameter).

Linux

• https://science-miner.s3.amazonaws.com/entity-fishing/0.0.5/db-kb.zip (7.5 GB)

• https://science-miner.s3.amazonaws.com/entity-fishing/0.0.5/db-en.zip (6.9 GB)

• https://science-miner.s3.amazonaws.com/entity-fishing/0.0.5/db-fr.zip (2.3 GB)

• https://science-miner.s3.amazonaws.com/entity-fishing/0.0.5/db-de.zip (2.6 GB)

• https://science-miner.s3.amazonaws.com/entity-fishing/0.0.5/db-es.zip (1.8 GB)

• https://science-miner.s3.amazonaws.com/entity-fishing/0.0.5/db-it.zip (1.6 GB)

• https://science-miner.s3.amazonaws.com/entity-fishing/0.0.5/db-ar.zip (1.3 GB)

• https://science-miner.s3.amazonaws.com/entity-fishing/0.0.5/db-zh.zip (1.3 GB)

• https://science-miner.s3.amazonaws.com/entity-fishing/0.0.5/db-ru.zip (2.3 GB)

• https://science-miner.s3.amazonaws.com/entity-fishing/0.0.5/db-ja.zip (1.8 GB)

• https://science-miner.s3.amazonaws.com/entity-fishing/0.0.5/db-pt.zip (1.8 GB)

• https://science-miner.s3.amazonaws.com/entity-fishing/0.0.5/db-fa.zip (1.8 GB)

MacOS is not officially supported and should not be used for production. For convenience, we still make available the
MacOS data version 0.0.3 corresponding to the Wikidata and Wikipedia dumps from mid-2018. Although outdated
and Arabic not available, they are still compatible with the entity-fishing version 0.0.4 and 0.0.5 and could be
used for test/development. However, we strongly recommend to use the Linux version for any serious works.

MacOS

• https://science-miner.s3.amazonaws.com/entity-fishing/0.0.3/macos/db-kb.zip (4.1 GB)

• https://science-miner.s3.amazonaws.com/entity-fishing/0.0.3/macos/db-en.zip (5.5 GB)

• https://science-miner.s3.amazonaws.com/entity-fishing/0.0.3/macos/db-fr.zip (1.9 GB)

• https://science-miner.s3.amazonaws.com/entity-fishing/0.0.3/macos/db-de.zip (2.0 GB)

8 Chapter 2. Install, build, run, and monitor

https://science-miner.s3.amazonaws.com/entity-fishing/0.0.5/db-kb.zip
https://science-miner.s3.amazonaws.com/entity-fishing/0.0.5/db-en.zip
https://science-miner.s3.amazonaws.com/entity-fishing/0.0.5/db-fr.zip
https://science-miner.s3.amazonaws.com/entity-fishing/0.0.5/db-de.zip
https://science-miner.s3.amazonaws.com/entity-fishing/0.0.5/db-es.zip
https://science-miner.s3.amazonaws.com/entity-fishing/0.0.5/db-it.zip
https://science-miner.s3.amazonaws.com/entity-fishing/0.0.5/db-ar.zip
https://science-miner.s3.amazonaws.com/entity-fishing/0.0.5/db-zh.zip
https://science-miner.s3.amazonaws.com/entity-fishing/0.0.5/db-ru.zip
https://science-miner.s3.amazonaws.com/entity-fishing/0.0.5/db-ja.zip
https://science-miner.s3.amazonaws.com/entity-fishing/0.0.5/db-pt.zip
https://science-miner.s3.amazonaws.com/entity-fishing/0.0.5/db-fa.zip
https://science-miner.s3.amazonaws.com/entity-fishing/0.0.3/macos/db-kb.zip
https://science-miner.s3.amazonaws.com/entity-fishing/0.0.3/macos/db-en.zip
https://science-miner.s3.amazonaws.com/entity-fishing/0.0.3/macos/db-fr.zip
https://science-miner.s3.amazonaws.com/entity-fishing/0.0.3/macos/db-de.zip

entity-fishing documentation, Release 0.0.5

• https://science-miner.s3.amazonaws.com/entity-fishing/0.0.3/macos/db-es.zip (1.5 GB)

• https://science-miner.s3.amazonaws.com/entity-fishing/0.0.3/macos/db-it.zip (1.3 GB)

1. Unzip the db archives files under data/db/.

This will install several sub-directories, one per language, plus wikidata (db-kb): data/db/
db-XY/, with XY equal to fr, en, it, es, en, ar, zh, ru, ja, pt and fa. The full uncompressed
data is more than 90 GB.

2. Build the project, under the entity-fishing project repository.

$./gradlew clean build

You should be now ready to run the service.

3. Run the service:

$./gradlew run

The test console is available at port :8090 by opening in your browser: http://localhost:8090

The service port, CORS parameters, and logging parameters can be configured in the file data/config/service.
yaml.

For more information, see the next section on the entity-fishing Console.

2.2 Metrics and monitoring

As the server is started, the Dropwizard administrative/service console can be accessed at http://localhost:8091/ (de-
fault hostname and port)

DropWizard metrics are available at http://localhost:8091/metrics?pretty=true

Prometheus metrics (e.g. for Graphana monitoring) are available at http://localhost:8091/metrics/prometheus

2.3 Creating a new Knowledge Base version

The knowledge base used by entity-fishing can be updated with new versions of Wikidata and Wikipedia using the
pre-processing from the library GRISP, see https://github.com/kermitt2/grisp.

2.2. Metrics and monitoring 9

https://science-miner.s3.amazonaws.com/entity-fishing/0.0.3/macos/db-es.zip
https://science-miner.s3.amazonaws.com/entity-fishing/0.0.3/macos/db-it.zip
http://localhost:8090
http://localhost:8091/
http://localhost:8091/metrics?pretty=true
http://localhost:8091/metrics/prometheus
https://github.com/kermitt2/grisp
https://github.com/kermitt2/grisp

entity-fishing documentation, Release 0.0.5

10 Chapter 2. Install, build, run, and monitor

CHAPTER 3

entity-fishing Console

The entity-fishing console is a graphical web interface, part of the entity-fishing project, providing means to discover
and test the service. With the console, it is possible to process chunks of text (typically a paragraph), PDF files and to
verify which entities are recognised and how they are disambiguated.

The console is also a reference implementation in javascript (with JQuery) of a web application using the entity-
fishing API service. As such, it illustrates how to call the services with mainstream Ajax queries, how to parse JSON
results with vulgus JQuery and how to dynamically annotate a PDF with PDF.js and a dynamic HTML layer.

The console is available at the root address of the server (e.g. http://localhost:8090 by default, to be changed
in the configuration file data/config/service.yaml).

The About page provides licence (Open Source Apache 2 licence for the entire tool including used dependencies) and
contact information.

The web page Services allows to test the different REST requests.

11

entity-fishing documentation, Release 0.0.5

A text form allows the analysis of any queries expressed in the entity-fishing query DSL (see next section). On the
right side of the input form, samples of text can be found, from scientific articles, news and historical documents in
supported various languages.

In the lower part, entities are recognised in the provided text and displayed using different colors, based on the entity
type and domain. On the lower right side, an infobox is displaying information provided by the service about the
disambiguated Wikidata/Wikipedia entity.

In this example the text box is used to disambiguate a search query:

12 Chapter 3. entity-fishing Console

entity-fishing documentation, Release 0.0.5

The console allows to test all the different services provided by entity-fishing, e.g. it’s possible to visualise the various
sentences identified by the the sentence segmentation service (more details on this specific service in the REST API
documentation).

13

entity-fishing documentation, Release 0.0.5

In addition, it is possible to view the service raw response (in JSON format) for helping the integration phase:

More details about the response in the next section.

14 Chapter 3. entity-fishing Console

CHAPTER 4

entity-fishing REST API

As RESTful web services, entity-fishing is defined by a certain number of stateless transformations of data made
available to “consumers” via its interface.

All these RESTful services are available through Cross-origin resource sharing (CORS), allowing clients, such as web
browser and server to interact in a flexible manner with cross-origin request.

4.1 entity-fishing query processing

The entity-fishing query processing service takes as input a JSON structured query and returns the JSON query en-
riched with a list of identified and, when possible, disambiguated entities.

The entity-fishing service can be applied on 4 types of input content:

• text, provided as JSON string value, for example one or several paragraphs of natural language,

• search query, provided as JSON string value, corresponding to several search terms used together and
which can possibly be disambiguated when associated,

• weighted vector of terms, provided by a structured JSON array, where each term will be disambiguated,
when possible, in the context of the complete vector - weighted vector of term is a very common structure
used in information retrieval, clustering and classification.

• PDF document, provided as multipart data with the JSON query string.

One and only one input type is mandatory in a query, otherwise an HTTP error 400 is returned (see response status
codes below). Combining multiple inputs in a single request is currently not supported.

4.1.1 Supported languages

In the current version 11 languages are supported: English, French, German, Spanish, Italian, Arabic, Japanese,
Chinese (Mandarin), Russian, Portuguese and Farsi are supported. We plan to extend the support in future releases, as
long the volume of the Wikipedia corpus for a new language is sufficient.

The service returns an HTTP error 406 if the language of the text to be processed is not supported, see below.

15

entity-fishing documentation, Release 0.0.5

4.1.2 Response status codes

In the following table are listed the status codes returned by this entry point.

HTTP Status code Reason
200 Successful operation.
400 Wrong request, missing parameters, missing header
404 Indicates property was not found
406 The language is not supported
500 Indicate an internal service error

4.1.3 REST query

POST /disambiguate

(1) Parameters

required name content-type value description
required query multipart/form-data Query to be processed in JSON UTF-8
optional file multipart/form-data PDF file (as multipart)

NOTE: To process the text query only (no PDF), is also possible to send it as normal application/json raw data.

(2) Request header

required name value description
optional Accept application/json Set the response type of the output

4.1.4 Query format description

The entity-fishing query processing service always consumes a parameter which is a JSON string representing a query,
and optionally a PDF file. The service thus follows a Query DSL approach (like, for instance, ElasticSearch) to
express queries instead of multiples HTTP parameters. This approach allows queries which are much richer, flexible
and simple to express, but also interactive scenarios (where output of the services can be used easily as input after
some changes from the user, as for instance in an interactive text editing task).

The JSON query indicates what is the textual content to process, the various (optional) parameters to consider when
processing it, optionally some already existing disambiguated entities (already disambiguated by a user or via a par-
ticular workflow), and an optional customisation to provide more context to the disambiguation process.

The JSON query is similar to the response of the entity-fishing service, so that a entity-fishing service response can be
sent as query after light modifications in an interactive usage scenario, or to be able to process easily already partially
annotated text.

When annotations are present in the query, the entity-fishing system will consider them certain and:

• ensure that the user annotations will be present in the output response without inconsistencies with other anno-
tations,

• exploit the user annotations to improve the context for identifying and disambiguating the other possible entities.

Similarly,

16 Chapter 4. entity-fishing REST API

entity-fishing documentation, Release 0.0.5

• if no language is indicated (usual scenario), the entity-fishing service will use a language identifier to detect the
correct language and the language resources to use. However, the query can also optionally specify a language
for the text to be processed. This will force the service to process the text with the corresponding particular
language resources.

• it is possible also to pass an existing sentence segmentation to the entity-fishing service via the JSON query, in
order that the service provides back identified entities following the given sentence segmentation.

The client must respect the JSON format of the entity-fishing response as new query, as described below:

Generic format

The JSON format for the query parameter to be sent to the service is identical to a response of the service:

{
"text": "The text to be processed.",
"shortText": "term1 term2 ...",
"termVector": [

{
"term": "term1",
"score": 0.3

},
{

"term": "term2",
"score": 0.1

}
],
"language": {

"lang": "en"
},
"entities": [],
"mentions": ["ner","wikipedia"],
"nbest": 0,
"sentence": false,
"customisation": "generic",
"processSentence": [],
"structure": "grobid"

}

One and only one of the 4 possible input type - JSON field text, shortText, termVector or a PDF file - must be provided
in a query to be valid. Using multiple input type in the same query is not supported in the version of the API described
here.

(1) text

Provides a text to be processed (e.g. one or several paragraphs). The text have be greater than 5 character or 406 is
returned. The expected amount of text to disambiguate for the different models is a paragraph (100-150 words). If the
amount of text is larger, the text will be automatically segmented into balanced segments of maximum 1000 characters
(this default size can be changed), using end-of-line and then sentence boundaries. A sliding context will be managed
to pass the previous accumulated context (best entities, identified acronyms, . . .) to the following segments.

(2) shortText

Provides a search query to be processed.

4.1. entity-fishing query processing 17

entity-fishing documentation, Release 0.0.5

(3) termVector

Provides a list of terms, each term being associated to a weight indicating the importance of the term as compared to
the other terms.

(4) language

If this field is empty, a language identifier is used. When the source language (parameters language) is pre-set the
language is considered certain, and a language identifier is not used.

(5) mentions

Provides the methods to be used to identify mentions to be disambiguated. By default, mentions are identified with
an NER (the mentions are all Named Entity found in the input text to be processed), noted ner and with all the
labels of Wikipedia for the appropriate language (all the anchors and titles used to refer to a Wikipedia page), noted
wikipedia. The order of the mention identification methods matters.

If the mentions field is an empty array ("mentions": [],), only the mentions present in the fied entities
will be disambiguated. This case allows to target the disambiguation only to one or a few mentions in a sentence or a
text.

(6) entities

In the input example above, the list entities can be used to provide predefined entities or mentions (typically pre-
annotated by a user). Having an already annotated entity helps the disambiguation service to resolve entity mentions
by offering an important contribution to the global context. When the entities attribute is not present or empty there
are simply no predefined annotations.

For example having a text with the mention “Washington” and manually providing its referring entity (e.g. the city
Washington DC) is an important advantage for a correct disambiguation of the other entity mentions in the text.

Below an example of how the pre-annotated entity can be provided. The algorithm would naturally disambiguate
German Army with German Army (Wehrmacht) (wikipediaId: 12354993) because the text is contextualised on the
First World War. The users can alter this result, by forcing the term to be the German Army of the Second World War
(wikipediaId: 11702744). In the response the entity should be returned with confidence 1.0 (as it has been manually
provided).

In order to get the wikipedia information for a term, check the term lookup documentation.

NOTE: At the moment the entity is taken in account only when the wikipediaExternalRef is provided:

{
"text": "Austria invaded and fought the Serbian army at the Battle of Cer and

→˓Battle of Kolubara beginning on 12 August.",
"language": {

"lang": "en"
},
"entities": [

{
"rawName": "German Army",
"offsetStart": 1107,
"offsetEnd": 1118,
"wikipediaExternalRef": 11702744,
"wikidataId": "Q701923"

(continues on next page)

18 Chapter 4. entity-fishing REST API

entity-fishing documentation, Release 0.0.5

(continued from previous page)

}
]

}

In a typical interactive scenario, an application client first sends a text to be processed via the /disambiguate service,
and receives a JSON response with some entities. The annotated text is displayed to a user which might correct some
invalid annotations. The client updates the modified annotations in the first JSON response and can send it back to the
service now as new query via the /disambiguate. The corrected annotations will then be exploited by the entity-fishing
system to possibly improve the other annotations and disambiguations.

The entities field can also contains only mentions defined by their offsets in the text, without wikidata/wikipedia
information. The mention will then be considered as a forced target mention to be disambiguated. In case the above
mentions field (5) is an empty array (i.e. no method to detect mention), these mentions defined in entities will
still be considered and disambiguated. This a way to limit the disambiguation to one or few mentions in a text, with
significant runtime gain.

(7) processSentence

The processSentence parameter is introduced to support interactive text editing scenarios. For instance, a user starts
writing a text and wants to use the entity-fishing service to annotate dynamically the text with entities as it is typed.

To avoid having the server reprocessing several time the same chunk of text and slowing down a processing time
which has to be almost real time, the client can simply indicate a sentence - the one that has just been changed - to be
processed.

The goal is to be able to process around two requests per second, even if the typed text is very long, so that the
annotations can be locally refreshed smoothly, even considering the fastest keystroke rates that a human can realize.

The processSentence parameter is followed by a list of notations (only numbers in integer, e.g. [1, 7] - note that the
index starts from 0) corresponding to the sentence index will limit the disambiguation to the selected sentences, while
considering the entire text and the previous annotations.

In this example only the second sentence will be processed by entity-fishing:

{
"text": "The army, led by general Paul von Hindenburg defeated Russia in a series

→˓of battles collectively known as the First Battle of Tannenberg. But the failed
→˓Russian invasion, causing the fresh German troops to move to the east, allowed the
→˓tactical Allied victory at the First Battle of the Marne.",

"processSentence": [
1

]
}

When processSentence is set, the sentence segmentation is triggered anyway and the value of the attribute sentence is
ignored:

{
"text": "The army, led by general Paul von Hindenburg defeated Russia in a series

→˓of battles collectively known as the First Battle of Tannenberg. But the failed
→˓Russian invasion, causing the fresh German troops to move to the east, allowed the
→˓tactical Allied victory at the First Battle of the Marne.",

"processSentence": [
1

],
"sentences": [

(continues on next page)

4.1. entity-fishing query processing 19

entity-fishing documentation, Release 0.0.5

(continued from previous page)

{
"offsetStart": 0,
"offsetEnd": 138

},
{

"offsetStart": 138,
"offsetEnd": 293

}
],
"entities": [

{
"rawName": "Russian",
"type": "NATIONAL",
"offsetStart": 153,
"offsetEnd": 160

}
]

}

Example using CURL (using the query above):

curl 'http://cloud.science-miner.com/nerd/service/disambiguate' -X POST -F "query={
→˓'text': 'The army, led by general Paul von Hindenburg defeated Russia in a series
→˓of battles collectively known as the First Battle of Tannenberg. But the failed
→˓Russian invasion, causing the fresh German troops to move to the east, allowed the
→˓tactical Allied victory at the First Battle of the Marne.', 'processSentence': [1
→˓], 'sentences': [{ 'offsetStart': 0, 'offsetEnd': 138 }, { 'offsetStart': 138,
→˓'offsetEnd': 293 }], 'entities': [{ 'rawName': 'Russian', 'type': 'NATIONAL',
→˓'offsetStart': 153, 'offsetEnd': 160 }] }"

(8) structure

The structure parameter is only considered when the input is a PDF. For processing scientific and technical documents,
in particular scholar papers, the value should be grobid which is a state of the art tool for structure the body of a
scientific paper - it will avoid labelling bibliographical callout (like Romary and al.), running foot and head notes,
figure content, it will identify the useful areas (header, paragraphs, captions, etc.), handling multiple columns, hyphen,
etc. It will apply custom processing based on the nature of the identified structure. This enables “structure-aware”
annotations. If no structure value is provided, the value grobid will be used.

If you wish to process the whole document without specific structure analysis - this is advised for non-scientific papers
-, use the value full.

Example using CURL for processing the full content of a PDF, without preliminar structure recognition:

curl 'http://cloud.science-miner.com/nerd/service/disambiguate' -X POST -F "query={
→˓'language': {'lang':'en'}}, 'entities': [], 'nbest': false, 'sentence': false,
→˓'structure': 'full'}" -F "file=@PATH_FILENAME.pdf"

Additional optional parameters

In addition to the different parameters described previously, it is also possible to set per query three additional param-
eters:

20 Chapter 4. entity-fishing REST API

entity-fishing documentation, Release 0.0.5

• ngramLength: the maximum length of a term to be considered as mention, default is 6 (i.e. complex terms
will be considered up to 6 words)

• targetSegmentSize: the maximum length of a segment to be considered when processing long texts in
number of characters, default is 1000 (i.e. a text of 10,000 characters will be segmented in approximatively ten
balanced segments of a maximum 1000 characters)

• minSelectorScore: this overrides the minSelectorScore indicated in the language-specific config-
uration files. It indicates the minimum score produced by the selector model under which the entities will be
pruned. This parameter can be used to modify the balance between precision and recall of the entity recognition.

• maxTermFrequency: this overrides the maxTermFrequency indicated in the language-specific configu-
ration files. This parameter indicates the maximum term frequency above which the terms will be skipped and
not used in the disambiguation. The frequency is expressed as Zipf, i.e. a number typically between 0 and 8.
Decreasing the value of this parameter can be used for faster processing runtime of the query, but some entities
might be overlooked.

It is advised not to modify these parameters in a normal usage of the service, because the different models have been
trained with the default parameter values. Modifying these parameters might decrease the accuracy of the service.

The following third additional parameter is currently only used for text queries and relevant to long text:

• documentLevelPropagation: if true, the entities disambiguated for certain mentions are propagated
to other same mentions in the document not labeled with an entity. This allows to maintain a document level
consistency where some mentions, due to poorer context, are not disambiguated, while other mentions in richer
contexts are disambiguated. To be propagated, the mention tf-idf must be higher than a certain threshold in
order to propagate only non trivial, minimally discriminant terms. Default is true.

PDF input

This service is processing a PDF provided as input after extracting and structuring its raw content. Structuration is
currently specialized to scientific and technical articles. Processing a PDF not corresponding to scientific articles is
currently not recommended.

In addition to the query, it accepts a PDF file via `multi-part/form-data`.

The JSON format for the query parameter to be sent to the service is identical to a response of the service:

{
"language": {

"lang": "en"
},
"entities": [],
"nbest": 0,
"sentence": false,
"structure": "grobid"

}

An additional parameter related to the processing of the structure of the PDF is available, called structure. For process-
ing scientific and technical documents, in particular scholar papers, the value should be grobid which is a state of the
art tool for structure the body of a scientific paper - it will avoid labelling bibliographical information, foot and head
notes, figure content, will identify the useful areas (header, paragraphs, captions, etc.) handling multiple columns,
hyphen, etc. and it will apply custom processnig based on the identified structure.

If you wish to process the whole document without specific structure analysis (this is advised for non-scientific docu-
ments), use the value full for the parameter structure.

Example using CURL (using the query above):

4.1. entity-fishing query processing 21

entity-fishing documentation, Release 0.0.5

curl 'http://cloud.science-miner.com/nerd/service/disambiguate' -X POST -F "query={
→˓'language': {'lang':'en'}}, 'entities': [], 'nbest': false, 'sentence': false,
→˓'structure': 'grobid'}" -F "file=@PATH_FILENAME.pdf"

Weighted term disambiguation

Process a weighted vector of terms. Each term will be disambiguated - when possible - in the context of the complete
vector.

Example request

{
"termVector":
[

{
"term" : "computer science",
"score" : 0.3

},
{

"term" : "engine",
"score" : 0.1

}
],
"language": {

"lang": "en"
},
"nbest": 0

}

The termVector field is required for having a well-formed query.

Example using CURL (using the query above):

curl 'http://cloud.science-miner.com/nerd/service/disambiguate' -X POST -F "query={
→˓'termVector': [{ 'term' : 'computer science', 'score' : 0.3 }, { 'term' : 'engine',
→˓ 'score' : 0.1 }], 'language': { 'lang': 'en' }, 'resultLanguages': ['de'], 'nbest
→˓': 0}"

Search query disambiguation

This functionality provides disambiguation for a search query expressed as a “short text”.

The input is the list of terms that are typically provided in the search bar of a search engine, and response time are
optimized to remain very low (1-10ms).

For example, let’s consider the search query: “concrete pump sensor”. From this association of search terms, it is
clear that the sense corresponding to concrete is the material, the entity is the device called concrete pump, and it has
nothing to do with concrete as the antonym of abstract.

Processing this kind of input permits to implement semantic search (search based on concept matching) and semantic-
based ranking (ranking of documents based on semantic proximity with a query, for instance exploiting clasifications,
domain information, etc.) in a search engine.

Search query disambiguation uses a special model optimized for a small number of non-strictly ordered terms and
trained with search queries.

The difference between standard text and short text is similar to the one of the ERD 2014 challenge.

22 Chapter 4. entity-fishing REST API

http://web-ngram.research.microsoft.com/erd2014/Docs/Detail%20Rules.pdf

entity-fishing documentation, Release 0.0.5

It is advised to specify the language of the query terms with the request, because the automatic language detection
from short string is more challenging and errors can be relativy frequent.

Example request:

{
"shortText": "concrete pump sensor",
“language": {

"lang": "en"
},
"nbest": 0

}

Example using CURL (using the query above):

curl 'http://cloud.science-miner.com/nerd/service/disambiguate' -X POST -F "query={
→˓'shortText': 'concrete pump sensor','language': { 'lang': 'en'},'nbest': 0}"

4.1.5 Response

The response returned by the entity-fishing query processing service is basically the same JSON as the JSON query,
enriched by the list of identified and, when possible, disambiguated entities, together with a server runtime information.

If the textual content to be processed is provided in the query as a string, the identified entities will be associated
to offset positions in the input string, so that the client can associate precisely the textual mention and the entity
“annotation”.

If the textual content to be processed is provided as a PDF document, the identified entities will be associated to
coordinates positions in the input PDF, so that the client can associate precisely the textual mention in the PDF via a
bounding box and makes possible dynamic PDF annotations.

Response when processing a text

{
"software": "entity-fishing",
"version": "0.0.5",
"runtime": 34,
"nbest": false,
"text": "Austria was attaching Serbia.",
"language": {

"lang": "en",
"conf": 0.9999948456042864

},
"entities":
[

{
"rawName": "Austria",
"type": "LOCATION",
"offsetStart": 0,
"offsetEnd": 7,
"confidence_score": "0.8667510394325003",
"wikipediaExternalRef": "26964606",
"wikidataId": "Q40",
"domains": [

"Atomic_Physic",
"Engineering",
"Administration",

(continues on next page)

4.1. entity-fishing query processing 23

entity-fishing documentation, Release 0.0.5

(continued from previous page)

"Geology",
"Oceanography",
"Earth"

]
},

[...] }

In the example above, the root layer of JSON values correspond to:

• runtime: the amount of time in milliseconds to process the request on server side,

• nbest: as provided in the query - when false or 0 returns only the best disambiguated result, otherwise indicates
to return up to the specified number of concurrent entities for each disambiguated mention,

• text: input text as provided in the query, all the offset position information are based on the text in this field,

• language: language detected in the text and his confidence score, if the language is provided in the query then
conf is equal to 1.0,

• entities: list of entities recognised in the text (with possibly entities provided in the query, considered then as
certain),

• global_categories: provides a weighted list of Wikipedia categories, in order of relevance that are representing
the context of the whole text in input.

For each entity the following information are provided:

• rawName: string realizing the entity as it appears in the text

• offsetStart, offsetEnd: the position offset of where the entity starts and ends in the text element in characters
(JSON UTF-8 characters)

• confidence_score: disambiguation and selection confidence score, indicates how certain the disambiguated
entity is actually valid for the text mention (this depends a lot on the amount of contextual text where this entity
is predicted, the more the better),

• wikipediaExternalRef: id of the wikipedia page. This id can be used to retrieve the original page from
wikipedia3 or to retrieve all the information associated to the concept in the knowledge base (definition, syn-
onyms, categories, etc. - see the section “Knowledge base concept retrieval”),

• wikidataId: the Wikidata QID of the predicted entity. This ID can be used to retrieve the complete Wikidata
entry in the knowledge base (the section “Knowledge base concept retrieval”).

• type: NER class of the entity (see table of the 27 NER classes below under “2. Named entity types”),

The type of recognised entities are restricted to a set of 27 classes of named entities (see GROBID NER documenta-
tion). Entities not covered by the knowledge bases (the identified entities unknown by Wikipedia) will be characterized
only by an entity class and a confidence score, without any reference to a Wikipedia article or domain information.

Response when processing a search query

{
"software": "entity-fishing",
"version": "0.0.5",
"runtime": 4,
"nbest": false,
"shortText": "concrete pump sensor",
"language": {

"lang": "en",
"conf": 1.0

},

(continues on next page)

24 Chapter 4. entity-fishing REST API

http://grobid-ner.readthedocs.io/en/latest/class-and-senses/
http://grobid-ner.readthedocs.io/en/latest/class-and-senses/

entity-fishing documentation, Release 0.0.5

(continued from previous page)

"global_categories":
[

{
"weight": 0.08448995135780164,
"source": "wikipedia-en",
"category": "Construction equipment",
"page_id": 24719865

},
[...]

],
"entities":
[

{
"rawName": "concrete pump",
"offsetStart": 0,
"offsetEnd": 13,
"confidence_score": 0.9501,
"wikipediaExternalRef": 7088907,
"wikidataId": "Q786115",
"domains": [

"Mechanics",
"Engineering"

]
},
{

"rawName": "sensor",
"offsetStart": 14,
"offsetEnd": 20,
"confidence_score": 0.3661,
"wikipediaExternalRef": 235757,
"wikidataId": "Q167676",
"domains": [

"Electricity",
"Electronics",
"Mechanics"

]
}
[...]

Response when processing a weighted vector of terms

{
"software": "entity-fishing",
"version": "0.0.5",
"date": "2022-06-22T13:21:43.245Z",
"runtime": 870,
"nbest": false,
"termVector": [

{
"term": "computer science",
"score": 0.3,
"entities": [

{
"rawName": "computer science",
"preferredTerm": "Computer science",
"confidence_score": 0,
"wikipediaExternalRef": 5323,

(continues on next page)

4.1. entity-fishing query processing 25

entity-fishing documentation, Release 0.0.5

(continued from previous page)

"wikidataId": "Q21198",
"definitions": [{

"definition": "'''Computer science''' blablabla.",
"source": "wikipedia-en",
"lang": "en"

}]
"categories": [

{
"source": "wikipedia-en",
"category": "Computer science",
"page_id": 691117

},
[...]

],
"multilingual": [

{
"lang": "de",
"term": "Informatik",
"page_id": 2335

}
]

}]
}
[...]

Response description when processing PDF

{
"software": "entity-fishing",
"version": "0.0.5",
"date": "2022-06-22T13:29:21.014Z",
"runtime": 32509,
"nbest": false,
"language": {

"lang": "en",
"conf": 0.9999987835857094

},
"pages":

[
{

"page_height":792.0,
"page_width":612.0

},
{

"page_height":792.0,
"page_width":612.0

},
{

"page_height":792.0,
"page_width":612.0

},
{

"page_height":792.0,
"page_width":612.0

}
],

"entities": [
(continues on next page)

26 Chapter 4. entity-fishing REST API

entity-fishing documentation, Release 0.0.5

(continued from previous page)

{
"rawName": "Austria",
"type": "LOCATION",
"confidence_score": "0.8667510394325003",
"pos": [

{ "p": 1, "x": 20, "y": 20, "h": 10, "w": 30 },
{ "p": 1, "x": 30, "y": 20, "h": 10, "w": 30 }]

"wikipediaExternalRef": "26964606",
"wikidataId": "Q40",
"domains": [

"Atomic_Physic", "Engineering", "Administration", "Geology", "Oceanography
→˓", "Earth"

] },
[...] }

As apparent in the above example, for PDF the offset position of the entities are replaced by coordinates information
introduced by the JSON attribute pos. These coordinates refer to the PDF that has been processed and permit to
identify the chunk of annotated text by the way of a list of bounding boxes.

In addition, an attribute pages is used to indicate the size of each page of the PDF document which is a necessary
information to position correctly annotations.

The next section further specifies the coordinates information provided by the service (see GROBID).

PDF Coordinates

The PDF coordinates system has three main characteristics:

• contrary to usage, the origin of a document is at the upper left corner. The x-axis extends to the right and the
y-axis extends downward,

• all locations and sizes are stored in an abstract value called a PDF unit,

• PDF documents do not have a resolution: to convert a PDF unit to a physical value such as pixels, an external
value must be provided for the resolution.

In addition, contrary to usage in computer science, the index associated to the first page is 1 (not 0).

The response of the processing of a PDF document by the entity-fishing service contains two specific structures for
positioning entity annotations in the PDF:

• the list of page size, introduced by the JSON attribute pages. The dimension of each page is given successively
by two attributes page_height and page_height.

• for each entity, a json attribute pos introduces a list of bounding boxes to identify the area of the annotation
corresponding to the entity. Several bounding boxes might be necessary because a textual mention does not
need to be a rectangle, but the union of rectangles (a union of bounding boxes), for instance when a mention to
be annotated is on several lines.

A bounding box is defined by the following attributes:

• p: the number of the page (beware, in the PDF world the first page has index 1!),

• x: the x-axis coordinate of the upper-left point of the bounding box,

• y: the y-axis coordinate of the upper-left point of the bounding box (beware, in the PDF world the y-axis extends
downward!),

• h: the height of the bounding box,

• w: the width of the bounding box.

4.1. entity-fishing query processing 27

http://github.com/kermitt2/grobid

entity-fishing documentation, Release 0.0.5

As a PDF document expresses value in abstract PDF unit and do not have resolution, the coordinates have to be
converted into the scale of the PDF layout used by the client (usually in pixels). This is why the dimension of the
pages are necessary for the correct scaling, taking into account that, in a PDF document, pages can be of different size.

The entity-fishing console offers a reference implementation with PDF.js for dynamically positioning entity annota-
tions on a processed PDF.

4.2 Knowledge base concept retrieval

This service returns the knowledge base concept information. In our case case, language-independent information
from Wikidata will be provided (Wikidata identifier, statements), together with language-dependent information (all
the Wikipedia information: Wikipedia categories, definitions, translingual information, etc.). This service is typically
used in pair with the main entity-fishing query processing service in order to retrieve a full description of an identified
entity.

The service supports the following identifiers:

• wikidata identifier (starting with Q, e.g. Q61)

• wikipedia identifier

The entity-fishing content processing service returns the identifiers of the resulting entities with some position offset
information. Then, if the client wants, for instance, to display an infobox for this entity, it will send a second call to
this service and retrieve the full information for this particular entity. Adding all the associated information for each
entity in the response of the entity-fishing query processing service would result in a very large response which would
slow a lot the client, such as a web browser for instance. Using such separate queries allows efficient asynchronous
calls which will never block a browser and permits to make only one call per entity, even if the same entity has been
found in several places in the same text.

The entity-fishing console offers an efficient reference implementation with Javascript and Ajax queries through the
combination of the main entity-fishing query processing service and the Knowledge base concept retrieval.

4.2.1 Response status codes

In the following table are listed the status codes returned by this entry point.

HTTP Status code Reason
200 Successful operation.
400 Wrong request, missing parameters, missing header
404 Indicates property was not found
500 Indicate an internal service error

GET /kb/concept/{id}

(1) Parameters

re-
quired

name content-type
value

description

re-
quired

id String ID of the concept to be retrieved (wikipedia, wikidata id (starting with Q) or
property (starting with P).

op-
tional

lang String (valid only for wikipedia IDs) The language knowledge base where to fetch the
concept from. Default: en.

28 Chapter 4. entity-fishing REST API

entity-fishing documentation, Release 0.0.5

(2) Request header

required name value description
optional Accept application/json Set the response type of the output

(3) Example response

{
"rawName": "Austria",
"preferredTerm": "Austria",
"confidence_score": "0.0",
"wikipediaExternalRef": "26964606",
"wikidataId": "Q1234"
"definitions": [
{

"definition": "'''Austria''', officially the '''Republic of Austria'''",
"source": "wikipedia-en",
"lang": "en"

}
],
"categories": [
{

"source": "wikipedia-en",
"category": "Austria",
"page_id": 707451

},
{

"lang": "de",
"source": "wikipedia-en",
"category": "Erasmus Prize winners",
"page_id": 1665997

}
],
"multilingual": [
{

"lang": "de",
"term": "Österreich",
"page_id": 1188788

},
{

"lang": "fr",
"term": "Autriche",
"page_id": 15

}
]

}

The elements present in this response are:

• rawName: The term name

• preferredTerm: The normalised term name

• confidence_score: always 0.0 because no disambiguation took place in a KB access

• wikipediaExternalRef: unique identifier of the concept in wikipedia

• wikidataId: unique identifier of the concept in wikidata

4.2. Knowledge base concept retrieval 29

entity-fishing documentation, Release 0.0.5

• definitions: list of wikipedia definitions (usually in wikipedia a concept contains one and only one definition).
Each definition is characterized by three properties:

• definition: The text of the definition

• source: The knowledge base from which the definition comes from (in this case can be wikipedia-en, wikipedia-
de and wikipedia-fr)

• lang: the language of the definition

• categories: This provides a list of Wikipedia categories7 directly coming from the wikipedia page of the dis-
ambiguated entity. Each category is characterised by the following properties:

• category: The category name

• source: The knowledge base from which the definition comes from.

• pageId: the Id of the page describing the category

• domains: For each entry, Wikipedia provides a huge set of categories, that are not always well curated (1 milion
categories in the whole wikipedia). Domains are generic classification of concepts, they are mapped from the
wikipedia categories.

• multilingual: provides references to multi-languages resources referring to the same entity. E.g. the entity
country called Austria is Österreich in German wikipedia and Autriche in French wikipedia. The page_id
provided here relates to the language-specific Wikipedia (e.g. in the above example the page_id for the country
Autriche in the French Wikipedia is 15).

4.3 Term Lookup

This service is used to search terms in the knowledge base. This service is useful to verify how many ambiguity a
certain term can generate.

4.3.1 Response status codes

In the following table are listed the status codes returned by this entry point.

GET /kb/term/{term}

(1) Parameters

re-
quired

name content-type
value

description

required term String The term to be retrieved
optional lang String The language knowledge base where to fetch the term from. Default:

en.

(2) Request header

required name value description
optional Accept application/json Set the response type of the output

30 Chapter 4. entity-fishing REST API

entity-fishing documentation, Release 0.0.5

4.4 Language identification

Identify the language of a provided text, associated to a confidence score.

4.4.1 Response status codes

In the following table are listed the status codes returned by this entry point.

HTTP Status code Reason
200 Successful operation.
400 Wrong request, missing parameters, missing header
404 Indicates property was not found
500 Indicate an internal service error

POST /language

(1) Parameters

required name content-type value description
required text String The text whose language needs to be identified

(2) Request header

required name value description
optional
optional

Accept
Content-Type

application/json
multipart/form-data

Set the response type of the output Define the format
of the posted property

(3) Example response (ISO 639-1)

Here a sample of the response

{
"lang":"en",
"conf": 0.9

}

GET /language?text={text}

(1) Parameters

required name content-type value description
required text String The text whose language needs to be identified

(2) Request header

required name value description
optional Accept application/json Set the response type of the output

(3) Example response (ISO 639-1)

Here a sample of the response

4.4. Language identification 31

entity-fishing documentation, Release 0.0.5

{
"lang":"en",
"conf": 0.9

}

4.5 Sentence segmentation

This service segments a text into sentences. It is useful in particular for the interactive mode for indicating that only
certain sentences need to be processed for a given query.

Beginning and end of each sentence are indicated with offset positions with respect to the input text.

4.5.1 Response status codes

In the following table are listed the status codes returned by this entry point.

POST /segmentation

(1) Parameters

required name content-type value description
required text String The text to be segmented into sentences

(2) Request header

required name value description
optional
optional

Accept
Content-Type

application/json
multipart/form-data

Set the response type of the output Define the format
of the posted property

(3) Example response

Here a sample of the response

{
"sentences": [
{

"offsetStart": 0,
"offsetEnd": 7

},
{

"offsetStart": 6,
"offsetEnd": 21

}
]

}

GET /segmentation?text={text}

(1) Parameters

32 Chapter 4. entity-fishing REST API

entity-fishing documentation, Release 0.0.5

required name content-type value description
required text String The text whose language needs to be identified

(2) Request header

required name value description
optional Accept application/json Set the response type of the output

(3) Example response

Here a sample of the response:

{
"sentences": [
{

"offsetStart": 0,
"offsetEnd": 7

},
{

"offsetStart": 6,
"offsetEnd": 21

}
]

}

4.6 Customisation API

The customisation is a way to specialize the entity recognition, disambiguation and resolution for a particular domain.
This API allows to manage customisations for the entity-fishing instance which can then be used as a parameter by the
entity-fishing services.

Customisation are identified by their name (or, also called profile in the API).

4.6.1 Customisation body

The JSON profile of a customisation to be sent to the server for creation and extension has the following structure:

{
"wikipedia": [
4764461,
51499,
1014346

],
"language": {"lang":"en"},
"texts": [
"World War I (WWI or WW1 or World War One), also known as Germany and Austria-

→˓Hungary."
],
"description": "Customisation for World War 1 domain"

}

The context will be build based on Wikipedia articles and raw texts, which are all optional. Wikipedia articles are
expressed as an array of Wikipedia page IDs.

Texts are represented as an array of raw text segments.

4.6. Customisation API 33

entity-fishing documentation, Release 0.0.5

4.6.2 Response status codes

In the following table are listed the status codes returned by this entry point.

HTTP Status code Reason
200 Successful operation.
400 Wrong request, missing parameters, missing header
404 Indicates property was not found
500 Indicate an internal service error

GET /customisations

Returns the list of existing customisations as a JSON array of customisation names.

(1) Request header

required name value description
optional Accept application/json Set the response type of the output

(2) Example response

Here a sample of the response:

[
"ww1",
“ww2”,
“biology”

]

GET /customisation/{name}

Retrieve the content of a specific customisation

(1) Parameters

required name content-type value description
required name String name of the customisation to be retrieved

(2) Request header

required name value description
optional Accept application/json Set the response type of the output

(3) Example response

Here a sample of the response

{
"wikipedia": [
4764461,
51499,
1014346

],
"language": {

(continues on next page)

34 Chapter 4. entity-fishing REST API

entity-fishing documentation, Release 0.0.5

(continued from previous page)

"lang": "en"
},
"texts": [
"World War I (WWI or WW1 or World War One), also known as the First World War or

→˓the Great War, was a global war centred in Europe that began on 28 July 1914 and
→˓lasted until 11 November 1918."
],
"description": "Customisation for World War 1 domain"

}

Or in case of issues:

{
"ok": "false",
"message": "The customisation already exists."

}

POST /customisations

Creates a customisation as defined in the input JSON, named following the path parameter. The JSON profile specifies
a context via the combination of a list of Wikipedia article IDs and text fragments. A text describing informally the
customisation can be added optionally.

If the customisation already exists an error is returned.

(1) Parameters

required name content-type value description
required name String name of the customisation to be created
required value String JSON representation of the customisation (see example)

(2) Request header

required name value description
optional Accept application/json Set the response type of the output

(3) Example response

Here a sample of the response

{
"ok": "true"

}

Or in case of issues:

{
"ok": "false",
"message": "The customisation already exists."

}

4.6. Customisation API 35

entity-fishing documentation, Release 0.0.5

PUT /customisation/{profile}

Update an existing customisation as defined in the input JSON, named following the path parameter. The JSON profile
specifies a context via the combination of a list of Wikipedia article IDs, FreeBase entity mid and text fragments.

A text describing informally the customisation can be added optionally.

(1) Parameters

required name content-type value description
required profile String name of the customisation to be updated

(2) Request header

required name value description
optional Accept application/json Set the response type of the output

(3) Example response

Here a sample of the response

{
"ok": "true"

}

Or in case of issues:

{
"ok": "false",
"message": "The customisation already exists."

}

DELETE /customisation/{profile}

(1) Parameters

required name content-type value description
required profile String name of the customisation to be deleted

(2) Request header

required name value description
optional Accept application/json Set the response type of the output

(3) Example response

Here a sample of the response

{
"ok": "true"

}

Or in case of issues:

36 Chapter 4. entity-fishing REST API

entity-fishing documentation, Release 0.0.5

{
"ok": "false",
"message": "The customisation already exists."

}

4.6. Customisation API 37

entity-fishing documentation, Release 0.0.5

38 Chapter 4. entity-fishing REST API

CHAPTER 5

Evaluation

5.1 Datasets for long texts

It is possible to evaluate entity-fishing entity disambiguation models with several well-known available datasets. For
convenience, the following datasets are present in the entity-fishing distribution:

• `ace`: this is a subset of the documents used in the ACE 2004 Coreference documents with 36 articles and
256 mentions, annotated through crowdsourcing, see [1].

• `aida`: AIDA-CONLL is a manually annotated dataset based on the CoNLL 2003 dataset, with 13881 Reuters
news articlesand 27817 mentions, see [2]. Note that the raw texts of this dataset are not included in entity-fishing,
they have to be obtained from NIST (free for research purpose). AIDA-CONLL dataset can be considered as the
most significant gold data for entity disambiguation both in term of size, ambiguity rate and annotation quality.
In addition to the complete AIDA-CONLL dataset, this corpus is divided into tree subsets that can be used for
evaluation separately:

– `aida-train`: corresponds to the training subset of the CoNLL 2003 dataset

– `aida-testa`: corresponds to the validation subset of the CoNLL 2003 dataset

– `aida-testb`: corresponds to the test subset of the CoNLL 2003 dataset

• `aquaint`: this dataset has been created by Milne and Witten [3], with 50 documents and 727 mentions from
a news corpus from the Xinhua News Service, the New York Times, and the Associated Press.

• `iitb`: manually created dataset by [4] with 50 documents collected from online news sources.

• `msnbc`: this dataset is based on 20 news articles from 10 different topics (two articles per topic) and contains
a total of 656 mentions, see [5].

• `clueweb`: WNED-Clueweb 12 dataset is a large dataset created by [6] from the Clueweb corpura automat-
ically - it is this far less reliable than the previous ones.

• `wikipedia`: similarly as the Clueweb dataset, this set has been created automatically by [6] from
Wikipedia, thus also clearly less reliable.

• `hirmeos`: manually created dataset using open accessible books (licence CC-BY), financed from the Euro-
pean project H2020 Hirmeos [7].

39

entity-fishing documentation, Release 0.0.5

All these reference datasets are located under data/corpus/corpus-long.

5.2 Evaluation commands

Use the following maven command with the above dataset identifier for running an evaluation:

$./gradlew evaluation -Pcorpus=[dataset]

For instance for evaluating against the testb subset of the AIDA-CONLL, use:

$./gradlew evaluation -Pcorpus=aida-testb

The evaluation process will provide standard metrics (accuracy, precision, recall. f1) for micro- and macro-averages
for the entity disambiguation algorithm selected as ranker and for priors (as baseline).

The recall of the candidate selection with respect to the gold annotations is also provided (e.g. the proportion of
candidate sets containing the expected answer before the ranking).

5.3 Generation of pre-annotated training/evaluation data

In case a new corpus needs to be created, entity-fishing includes the possibility to automatically generate an XML
file of entity annotations from text or pdf files in the same format as the other existing corpus. These generated files
can then be corrected manually and used as gold training or evaluation data, or they can be used for semi-supervised
training.

For a given new corpus to be created, for instance the corpus toto, the following directory must be created: data/
corpus/corpus-long/toto/ The documents part of this corpus must be placed under the subdirectories
RawText and/or pdf.

If there is a directory called pdf or PDF, the process will extract information (title, abstract, body) from each pdf and
save it as pdfFileName.lang.txt inside the RawText directory. The tool will then look into the subdirectory
RawText and process the files *.txt found inside. If the files name is in the form filename.lang.txt then
the lang will be used as reference, otherwise en will be the default choice.

Use the following maven command with the above dataset identifier for generating the annotation xml file:

$./gradlew annotatedDataGeneration -Pcorpus=[corpusname]

For instance, for a new corpus toto, with text or pdf documents prepared as indicated above:

$./gradlew annotatedDataGeneration -Pcorpus=toto

5.4 References

[1] Lev-Arie Ratinov, Dan Roth, Doug Downey, and Mike Anderson. Local and global algorithms for disambiguation
to wikipedia. In Dekang Lin, Yuji Matsumoto, and Rada Mihalcea, editors, The 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Language Technologies, Proceedings of the Conference, 19-24 June,
2011, Portland, Oregon, USA, pages 1375–1384. ACL. <http://www.aclweb.org/anthology/P11-1138>.

[2] Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bordino, Hagen Fürstenau, Manfred Pinkal, Marc Spaniol, Bilyana
Taneva, Stefan Thater, and Gerhard Weikum. Robust disambiguation of named entities in text. In Proceedings of
the 2011 Conference on Empirical Methods in Natural Language Processing, EMNLP 2011, 27-31 July 2011, John

40 Chapter 5. Evaluation

http://www.aclweb.org/anthology/P11-1138

entity-fishing documentation, Release 0.0.5

McIntyre Conference Centre, Edinburgh, UK, A meeting of SIGDAT, a Special Interest Group of the ACL, pages
782–792. ACL. <http://www.aclweb.org/anthology/D11-1072>.

[3] David N. Milne and Ian H. Witten. Learning to link with wikipedia. In James G. Shanahan, Sihem Amer-Yahia,
Ioana Manolescu, Yi Zhang, David A. Evans, Aleksander Kolcz, Key-Sun Choi, and Abdur Chowdhury, editors,
Proceedings of the 17th ACM Conference on Information and Knowledge Management, CIKM 2008, Napa Valley,
alifornia, USA, October 26-30, 2008, pages 509–518. ACM. DOI <https://doi.org/10.1145/1458082.1458150>.

[4] Sayali Kulkarni, Amit Singh, Ganesh Ramakrishnan, and Soumen Chakrabarti. Collective annotation of Wikipedia
entities in web text. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and
data mining (KDD ‘09), Paris, France, 2009, pages 457-466. ACM. DOI: <https://doi.org/10.1145/1557019.1557073>

[5] Silviu Cucerzan. Large-scale named entity disambiguation based on Wikipedia data. In Jason Eisner, editor,
EMNLP-CoNLL 2007, Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Pro-
cessing and Computational Natural Language Learning, June 28-30, 2007, Prague, Czech Republic, pages 708–716.
ACL. <http://www.aclweb.org/anthology/D07-1074>.

[6] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to rank: from pairwise approach to
listwise approach. In Zoubin Ghahramani, editor, Machine Learning, Proceedings of the Twenty-Fourth International
Conference (ICML 2007), Corvallis, Oregon, USA, June 20-24, 2007, volume 227 of ACM International Conference
Proceeding Series, pages 129–136. ACM. DOI <https://doi.org/10.1145/1273496.1273513>.

[7] HIRMEOS H2020 project. More information here.

5.4. References 41

http://www.aclweb.org/anthology/D11-1072
https://doi.org/10.1145/1458082.1458150
https://doi.org/10.1145/1557019.1557073
http://www.aclweb.org/anthology/D07-1074
https://doi.org/10.1145/1273496.1273513
http://www.hirmeos.eu

entity-fishing documentation, Release 0.0.5

42 Chapter 5. Evaluation

CHAPTER 6

Train and evaluate

Trained models for entity recognition and disambiguation are provided in the project repository. The following section
explains how to retrain the models.

6.1 Training with Wikipedia

Currently a random sample of Wikipedia articles is used for training. The full article content is therefore necessary
and a dedicated database will be created the first time the training is launched. This additional database is used and is
required only for training. You will need the Wikipedia XML dump corresponding to the target languages available in
a directory indicated in the yaml config files by the parameter dataDirectory. A warning here, as this additional
database contains the whole textual content of all Wikipedia articles (with wiki markups), it is quite big, around 7.6G
GB for the English Wikipedia (dump from May 2020). This database (stored under the dbDirectory indicated in
the language config file and called markupFull) will be built automatically if not present, so typically at first launch
of the training for a given language, and the process will take a bit more than one hour for building the English version
for example.

The following command will build the two models used in entity-fishing, the ranker and the selector model
(Gradient Tree Boosting for the first one, Random Forest for the second one) and preliminary build the full article
content database the first time for the English Wikipedia:

$./gradlew train_wikipedia -Plang=en

For other languages, replace the ending language code (en) by the desired one (fr, de, it, es, ar, zh, ru and ja
are supported), e.g.:

$./gradlew train_annotate -Plang=fr
$./gradlew train_annotate -Plang=de

Models will be saved under data/models. ARFF training data files used to build the model are saved under data/
wikipedia/training/.

43

entity-fishing documentation, Release 0.0.5

6.2 Evaluation with Wikipedia

An evaluation is produced at the end of training base on a random sample of Wikipedia articles, providing macro- and
micro-average precision, recall and f1-score.

Note that the ratio of disambiguated mentions in a Wikipedia article is low. As a consequence, the precision of our
models will be very low because they are built for disambiguating a maximum of entities. Recall is probably a more
meaningful measure when evaluating with Wikipedia.

For an evaluation of the NED aspect (ranker in our framework) with well-known datasets, which is much more standard
and allows comparison with other similar works, see the evaluation section.

6.3 Training with an annotated corpus

It is possible to train the entity-fishing models with several well-known available datasets. For convenience, the
datasets indicated here Evaluation are present in the entity-fishing distribution.

Use the following command with a dataset name and a language identifier for running a training with this dataset:

$./gradlew train_corpus -Pcorpus=aquaint -Plang=en

For instance for training with the train subset of the AIDA-CONLL, use:

$./gradlew train_corpus -Pcorpus=aida-train -Plang=en

entity-fishing also included the possibility to generate additional pre-annotated corpus, for instance to be further cor-
rected manually. See Evaluation for the explanations.

The evaluation with annotated corpus is also described in the page Evaluation.

6.4 Creating entity embeddings

Entity embeddings are used to improve entity disambiguation. They are created from word embeddings and entity
descriptions generated from Wikidata and Wikipedia. Embeddings resources are provided with the project data re-
sources, so you normally don’t have to create yourself these embeddings. For reference, we document here how to
create these entity embeddings. The process is as follow:

1. Download available pretrained word embeddings for a target language - this could be for instance word2vec,
FastText, or lexvec. Word embeddings need initially to be in the standard .vec format (a text format). word2vec
binary format can be transformed into .vec format with the simple utility convertvec

Note: English and Arabic word embeddings used in the current entity-fishing are Glove “flavor”. Arabic embeddings
are available at https://archive.org/details/arabic_corpus, see https://ia803100.us.archive.org/4/items/arabic_corpus/
vectors.txt.xz. Other languages are using fastText word embeddings.

2. Quantize word embeddings

Quantize will simplify the vector given an acceptable quantization factor (by default the error rate for quantizing is
0.01, but it could be changed with the argument -Perror)

$./gradlew quantize_word_embeddings -Pi=/media/lopez/data/embeddings/glove-vectors.
→˓vec -Po=/media/lopez/data/embeddings/word.embeddings.quantized

44 Chapter 6. Train and evaluate

https://github.com/marekrei/convertvec
https://archive.org/details/arabic_corpus
https://ia803100.us.archive.org/4/items/arabic_corpus/vectors.txt.xz
https://ia803100.us.archive.org/4/items/arabic_corpus/vectors.txt.xz

entity-fishing documentation, Release 0.0.5

Here some Glove word embeddings glove-vectors.vec given as input (-i) will be quantized and saved as
word.embeddings.quantized. By default, the flag -hashheader is used and indicates that the first line
(a header to be ignored) must be skipped. In case there is no header, -hashheader should be removed in the
corresponding gradle task quantize_word_embeddings (see file build.gradle).

3. Create Wikidata entity description to be used for producing entity embeddings. The command for creating descrip-
tion is the following one:

$./gradlew generate_entity_description -Plang=en

Replace the en argument by the language of interest.

The generated description are saved under data/embeddings/en/), given the language of interest (here en).

4. Create entity embeddings from the generated description.

This step might take a lot of time and exploiting multithreading is particularly hepful. The number of threads to be
used is given by the argument -n:

$./gradlew generate_entity_embeddings -Pin=entity.description -Pv=word.embeddings.
→˓quantized -Pout=entity.embeddings.vec -Pn=10

The following parameters are available:

• -h: displays help

• -in: path to an entity description data file

• -v: the path to the word embedding file in .vec format (e.g. one originally of word2vec, faster, lexvec, etc.),
optionally quantized

• -out: path to the result entity embeddings file (not quantized, this is to be done afterwards)

• -n: number of threads to be used, default is 1 but it is advice to used as much as possible

• -rho: rho negative sampling parameters, if it’s < 0 use even sampling, default is -1 (must be an integer)

• -max: maximum words per entity, if < 0 use all the words, default is -1 (must be an integer)

5. Quantize entity embeddings

Finally, similarly as the steps 2., we apply a quantization to the entity embeddings:

$./gradlew quantize_word_embeddings -Pi=/media/lopez/data/embeddings/entity.
→˓embeddings.vec -Po=/media/lopez/data/embeddings/entity.embeddings.quantized

The entity embeddings are now ready to be loaded in the embedded database of entity-fishing.

6. Copy the quantized embeddings files (e.g. entity.embeddings.quantized) under the entity-fishing
data repository (the one containing the csv files). entity-fishing expects compressed files with .gz extension:
word.embeddings.quantized.gz and entity.embeddings.quantized.gz. Starting entity-
fishing will load automatically the embeddings in the embedded database LMDB as binary data.

6.4. Creating entity embeddings 45

entity-fishing documentation, Release 0.0.5

46 Chapter 6. Train and evaluate

CHAPTER 7

License and contact

entity-fishing is distributed under Apache 2.0 license. The dependencies used in the project are either themselves also
distributed under Apache 2.0 license or distributed under a compatible license.

The documentation is distributed under CC-0 license and the annotated data under CC-BY license.

If you contribute to entity-fishing, you agree to share your contribution following these licenses.

Main author and contact: Patrice Lopez (<patrice.lopez@science-miner.com>)

47

http://www.apache.org/licenses/LICENSE-2.0
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/licenses/by/4.0/
mailto:patrice.lopez@science-miner.com

	Overview
	Motivation
	Tasks
	Summary
	How to cite
	License and contact

	Install, build, run, and monitor
	Install, build, and run
	Metrics and monitoring
	Creating a new Knowledge Base version

	entity-fishing Console
	entity-fishing REST API
	entity-fishing query processing
	Knowledge base concept retrieval
	Term Lookup
	Language identification
	Sentence segmentation
	Customisation API

	Evaluation
	Datasets for long texts
	Evaluation commands
	Generation of pre-annotated training/evaluation data
	References

	Train and evaluate
	Training with Wikipedia
	Evaluation with Wikipedia
	Training with an annotated corpus
	Creating entity embeddings

	License and contact

